
LIFO - Bâtiment 3IA
Rue Léonard de Vinci

BP 6759
45067 Orléans Cedex 2, France

Rapport de Recherche

A Constraint Programming Approach
for Constrained Clustering

Thi-Bich-Hanh Dao, Khanh-Chuong Duong, Christel Vrain

LIFO, Université d’Orléans

Rapport no RR-2013-03

A Constraint Programming Approach for Constrained

Clustering

Thi-Bich-Hanh Dao Khanh-Chuong Duong Christel Vrain

Abstract

Clustering is an important task in Data Mining and many algorithms have been designed
for it. It has been extended to semi-supervised clustering, so as to integrate some previous
knowledge on objects that must be or cannot be in the same cluster, and many classical
algorithms have been extended to handle such constraints. Other kinds of constraints could
be specified by the user, as for instance the sizes of the clusters or their diameters, but adding
such constraints generally requires to develop new algorithms. We propose a declarative and
generic framework, based on Constraint Programming, which enables to design a clustering
task by specifying an optimization criterion and some constraints either on the clusters or on
pairs of objects. In our framework, several classical optimization criteria are considered and
they can be coupled with different kinds of constraints. Relying on Constraint Programming
has two main advantages: the declarativity, which enables to easily add new constraints and
the ability to find an optimal solution satisfying all the constraints (when there exists one).
On the other hand, computation time depends on the constraints and on their ability to
reduce the domain of variables, thus avoiding an exhaustive search.

1 Introduction and Motivation

Clustering is an important task in Data Mining and many algorithms have been designed for it. It
has been extended to semi-supervised clustering, so as to integrate previous knowledge on objects
that must be or cannot be in the same cluster, and most algorithms have been adapted to handle
such information. Other kinds of constraints could be specified by the user, as for instance the
sizes of the clusters or their diameters, but classical frameworks are not designed to integrate
different types of knowledge. Yet, in the context of an exploratory process, it would be important
to be able to express constraints on the task at hand, tuning the model for getting finer solutions.
Constrained clustering aims at integrating constraints in the clustering process, but the algorithms
are usually developed for handling one kind of constraints. Developing general solvers with the
ability of handling different kinds of constraints is therefore of high importance for Data Mining.
We propose a declarative and generic framework, based on Constraint Programming, which enables
to design a clustering task by specifying an optimization criterion and some constraints either on
the clusters or on pairs of objects.

Relying on Constraint Programming (CP) has two main advantages: the declarativity, which
enables to easily add new constraints and the ability to find an optimal solution satisfying all
the constraints (when there exists one). Recent progress in CP have made this paradigm more
powerful and several work [11, 10, 5] have already shown its interest for Data Mining.

In this paper, we propose a CP model for constrained clustering, aiming at finding a partition
of data that optimizes a criterion. We generalize the model with different optimization criteria,
namely minimizing the maximal diameter of clusters, maximizing the margin between clusters and
minimizing the Within-Cluster Sums of Dissimilarities (WCSD). Clustering with WCSD criterion
is NP-Hard, since one of the instance of this problem is the weighted max-cut problem, which
is NP-Complete [13]. Recent work [6] has addressed the problem of finding an exact optimum
but the size of the database must be quite small, all the more when k is high. One of the key
constraints of our model is a combination of a sum constraint with reified equality constraints

2

V =
∑

1≤i<j≤n(G[i] == G[j])aij , with V and the G[i] variables and aij constants. We have
developed a filtering algorithm for this constraint for the WCSD problem, and experiments show
that we are able of finding the optimal solution for small to medium databases. Moreover, adding
constraints allows to reduce the computation time.

There are two main contributions in our paper: a general framework for Constrained Clustering
which is integrated with different kinds of optimization criteria and a filtering algorithm for the
sum constraint V =

∑
1≤i<j≤n(G[i]==G[j])aij .

In our model, the number k of classes is fixed (in theory no bound is given on k but the larger
k, the higher the complexity). The model takes as input a matrix of distances between objects,
and thus can deal with qualitative and quantitative databases. We show that our framework can
be directly extended to instance-level and cluster-level constraints.

The paper is organized as follows. We present preliminary notions on constraint-based cluster-
ing in Section 2 and those on CP in Section 3. Related works are discussed in Section 4. Section
5 is devoted to the presentation of our model and Section 6 to experiments. Conclusion and
discussion on future works are given in Section 7.

2 Preliminaries

2.1 Definition of Clustering

Clustering is the process of grouping data into classes or clusters, so that objects within a cluster
have high similarity but are very dissimilar to objects in other clusters. More formally, we consider
a database of n objects O = {o1, . . . , on} and a dissimilarity measure d(oi, oj) between two objects
oi and oj of O. The objets are usually described by attributes, which may be qualitative or
quantitative attributes. In case of quantitative attributes, the Euclidean measure is classically
used. It is defined by

d(oi, oj) =

√√√√ m∑
t=1

(xit − xjt)2 (1)

where oi = (xi1, xi2, . . . , xim) and oj = (xj1, xj2, . . . , xjm) are two m-dimensional objects. In some
cases, the system is only provided with a matrix given the dissimilarity between pairs of objects.

Clustering is often seen as an optimization problem, i.e., finding a partition of the objects,
optimizing a given criterion. There are many variations of the clustering problem. Several points
of view can be used to classify clustering methods, such as the form of the learned structure
(partition, hierarchy, overlapping or not, . . .), or the criterion to optimize. In this paper we are
interested in partitioning methods that learn a partition of the set of objects. It means finding
a set of k classes C1, . . . , Ck such that: (1) for all c ∈ [1, k], Cc 6= ∅, (2) ∪cCc = O, (3) for all c,
c′ such that c 6= c′, Cc ∩ Cc′ = ∅, and (4) a criterion E is optimized. Optimized criteria may be,
among others:

• Within-Cluster Sum of Squares (WCSS) criterion:

E =

k∑
c=1

∑
oi∈Cc

d(mc, oi)
2

where mc is the center of cluster Cc.

• Within-Cluster Sums of Dissimilarities (WCSD) criterion

E =

k∑
c=1

∑
oi,oj∈Cc

d(oi, oj)
2

3

where oi, oj are objects in the cluster Cc. When Euclidean distance is used, this criterion

once standardized via the division by the size of each group,
∑k

c=1(
∑

i,j∈Cc
d(i, j)2)/|Cc|, is

equivalent to the Within-Cluster Sum of Square criterion.

• Absolute-error criterion:

E =

k∑
c=1

∑
oi∈Cc

d(oi, rc)

where rc is a representative object of the cluster Cc.

• Diameter-based criterion:

E = maxc∈[1,k],oi,oj∈Cc
(d(oi, oj))

E is the maximum diameter of the clusters, where the diameter of a cluster is the maximum
distance between any two of its objects.

• Margin-based criterion

E = minc<c′∈[1,k],oi∈Cc,oj∈Cc′
(d(oi, oj))

E is the minimal margin between clusters, where the minimal margin between 2 clusters
Cc, Cc′ is the minimum value of the distances d(oi, oj), with oi ∈ Cc and oj ∈ Cc′ .

Clustering task with these criteria is NP-Hard, well-known algorithms such as k-means, k-medoids
use heuristics and usually find a local optimum.

2.2 Partitioning methods

In this section, we present most common partitioning methods. Most of partitioning methods
are heuristic, they are iterative relocation clustering algorithms. The quality of the solutions is
measured by the clustering criterion. At each iteration, the iterative relocation algorithms reduce
the value of the criterion function until convergence. The convergence is local and the globally
optimal solution cannot be guaranteed. The problem of local minimal could be avoided by using
exhaustive search methods. However, finding the globally optimal partition is known to be a
NP-hard problem.

2.2.1 k-means

The k-means algorithm is a simple iterative method to partition a dataset into k clusters. The
algorithm is initialized by picking k objects from O as the k initial cluster representatives or
centroids. Then each object is assigned to the closest centroid, forming a partition of the dataset.
Next, each representative is relocated by the mean value of all objects assigned to it. Using the new
cluster representatives, objects are assigned again. This process iterates until there is no change
of assignments of objects, or equivalently, until there is no change of centroids. The k-means
algorithm always converges to a solution where the centroids are stable.

The algorithm aims at minimizing the WCSS. In each iteration of the algorithm, the WCSS
reduces and converges to a local optimum. This method is efficient if clusters are separated from
each other. Now we will show how the update of cluster centroids minimizes the WCSS, specialized

4

for one-dimensional data. It is shown in [25] that: the kth centroid of the cluster mk minimizes
the WCSS, by setting the differentiating of the WCSS to 0 and solving:

∂

∂mk
WCSS =

∂

∂mk

k∑
c=1

∑
oi∈Cc

d(mc, oi)
2 (2)

=
∂

∂mk

k∑
c=1

∑
oi∈Cc

(mc − oi)2 (3)

=

k∑
c=1

∑
oi∈Cc

∂

∂mk
(mc − oi)2 (4)

=
∑

ok∈Ck

2 ∗ (mk − ok) = 0 (5)

∑
ok∈Ck

2 ∗ (mk − ok) = 0⇒ |ck|mk =
∑

ok∈ck

ok ⇒ mk =
1

|ck|
∑

ok∈ck

(6)

So, the best centroid for minimizing the WCSS of a cluster is the mean of the points in the cluster.

Algorithm 1: k-Means algorithm

1 Generate randomly k objects as initial cluster centers;
2 repeat
3 Assign each object to the cluster with the closest center;
4 Re-calculate the new center of each cluster as the mean value of the objects in each

cluster;

5 until no change of cluster center ;

The k-means is efficient if clusters are separated from each other. It can handle large dataset
because the complexity of the algorithm is O(nkt) where t is the number of iterations. However,
this method can be applied only when the mean value of clusters can be computed. Moreover, this
method is sensible to noises and outliers because those values affect the mean value of clusters.

2.2.2 k-medoids

In this method, an actual object is chosen in each cluster as a representative object. This method
uses the absolute-error criterion and it differs from k-means where the representative is computed
as the mean value of the objets. It starts by choosing k objects as the initial cluster representative.
Each object is assigned to its nearest representative object. It then chooses new representative
object for each cluster allowing to minimizing the absolute error criterion. With the new rep-
resentative, the method reassigned the objects. The algorithm iterates until each representative
object is actually the medoid, or most centrally located object of its cluster. It is more robust to
noise and outliers as compared to k-means. However, both k-medoids and k-means search for an
optimal local, it means that the quality of the partitioning depends on the initial state.

Algorithm 2: k-medoids algorithm for partitioning

1 Randomly generate k objects as initial cluster representatives;
2 repeat
3 Assign each object to the cluster with the closest representative;
4 Randomly select a non representative object oi;
5 Compute the cost S when swap the object oi with a representative oj ;
6 if S < 0 then
7 swap oi with oj , oi is now a new representative ;

8 until no change of cluster representatives;

5

2.2.3 FPF

The method FPF (Furthest Point First) introduced in [14] uses the maximum diameter criterion.
In this method, each cluster has an object as the head and every objects in a cluster are closer
to their head than other heads. The method starts by choosing an object as the head of the first
cluster and assigns all objects to it. In the next iteration, the furthest object from the first head
is chosen as the head of the second cluster. Any object which is closer to the second head than
the first one will be moved to the second cluster. The algorithm iterates: choosing the object
that is furthest to its head as the head of the new cluster and reassigning objects. It stops after
k iterations since k clusters are needed. The time complexity is O(kn). Let dopt be the global
optimal, then this heuristic is guaranteed to find a clustering with a maximum diameter d such
that dopt ≤ d ≤ 2dopt if the distance satisfies the triangle inequality. Moreover, Gonzalez showed
that this approximation ratio is tight: finding d such that d ≤ (2− ε)dopt is NP-hard for all ε > 0
when objects are in a three dimensional space.

Algorithm 3: FPF algorithm for partitioning

1 Randomly select an object, mark it as head1, the head of cluster 1;
2 for i← 2 to k do
3 Select the object that is furthest to its head, mark it as headi;
4 Assign every object o to cluster i if o is closer to headi than to its head;

2.2.4 DBSCAN

Most partitioning methods find spherical-shaped clusters. The method DBSCAN [12] is based
on the notion of density, which allows to discovery arbitrary shaped clusters. In this method,
the number of k is not given, but additional parameters defining the density must be specified.
DBSCAN requires two input parameters MinPts and Eps and its complexity is O(n2). It discovers
clusters with arbitrary shape but with the same density. This approach is based on the following
notions.

• The Eps neighborhood of a point p is defined by:

NEps(p) = {q ∈ O|dist(p, q) ≤ Eps}

• Core point: It has at least MinPts points within a radius Eps. A point p is a core point iff
|NEps(p)| ≥MinPts.

• Border point: It doesn’t have at least MinPts points within a radius Eps but it is the
neighborhood of one or more core points. A point p is a border point iff |NEps(p)| < MinPts
and ∃q : p ∈ NEps(q), |NEps(q)| ≥MinPts.

• Noises: Point which is neither a core point nor border point.

• Directly Density Reachable: A point p is directly density reachable from a point q if q is a
core point and p is the neghborhood of q:

p ∈ NEps(q), |NEps(q)| ≥MinPts

• Density Reachable: A point p is density reachable from a point q if there is a chain of point
p1, . . . , pn, such that p1 = q, pn = p and pi+1 is directly density reachable from pi.

• Density connected: A point p is density connected to a point q if there is a point o such that
both p and q are density reachable from o.

The method DBSCAN starts with an abitrary point p and it retrieves the neighborhood of p to
verify if p is a core point or not. If p do not have at least MinPts within a radius Eps, it is

6

marked as a noise (it can be remarked as a border point later). Otherwise, p is a core point and a
new cluster is formed from p and its neighborhoods. DBSCAN iteratively expend the new cluster
by retrieving all points which are density-reachable from p. After that, the algorithm visits the
next unvisited point. DBSCAN stops when all the points are visited.

Algorithm 4: DBSCAN algorithm

1 C ← 0;
2 for each unvisited point p in dataset O do
3 Mark p as visited;
4 NeighborP ts ← regionQuery(p,Eps);
5 if sizeof(NeighborPts) < MinPts then
6 Mark p as NOISE;
7 else
8 C ← C + 1;
9 expandCluster(p,NeighborP ts, C,Eps,MinPts);

Function expandCluster(p, NeighborPts, cluster, Eps, MinPts)

1 Add p to cluster C;
2 for each point p′ in NeighborP ts do
3 if p′ is not yet member of any cluster then
4 add p′ to cluster C;

5 NeighborP ts′ = regionQuery(p′, eps);
6 if sizeof(NeighborP ts′) ≥MinPts then
7 add NeighborP ts′ to NeighborP ts

Function regionQuery

1 return all points within the radius Eps from p ;

2.3 Constraint-based Clustering

Most clustering methods rely on an optimization criterion, and because of the inherent complexity
search for a local optimum. Several optima may exist, some may be closer to the one expected
by the user. In order to better model the task, but also in the hope of reducing the complexity,
constraints can be added, leading to Constraint-based Clustering that aims at finding clusters that
satisfy user-specified constraints. They can be classified into cluster-level constraints, specifying
requirements on the clusters as for instance, the number of elements, or instance-level constraints,
specifying that two elements must be or cannot be in the same cluster.

Most of the attention has been put on instance-level constraints, first introduced in [26]. Com-
monly, two kinds of constraints are used: must-link and cannot-link.

• A must-link constraint specifies that two objects oi and oj have to appear in the same cluster:

∀c ∈ [1, k], oi ∈ Cc ⇔ oj ∈ Cc.

• A cannot-link constraint specifies that two objects must not be put in the same cluster:

∀c ∈ [1, k], ¬(oi ∈ Cc ∧ oj ∈ Cc).

Cluster-level constraints impose requirements on the clusters.

• The minimum capacity constraint requires that each cluster has at least a minimum number
α of objects:

∀c ∈ [1, k], |Cc| ≥ α

7

whereas the maximum capacity constraint requires each cluster to have at most a maximum
number β of objects:

∀c ∈ [1, k], |Cc| ≤ β

• The maximum diameter constraint specifies the maximum diameter γ of clusters:

∀c ∈ [1, k],∀oi, oj ∈ Cc, d(oi, oj) ≤ γ

• The minimum margin constraint, also called the δ-constraint in [8], requires the distance
between any two points of different clusters to be superior to a given threshold δ :

∀c ∈ [1, k],∀c′ 6= c,∀oi ∈ Cc, oj ∈ Cc′ , d(oi, oj) ≥ δ

• The ε-constraint introduced in [8] requires for each point oi to have in its neighborhood of
radius ε at least another point of the same cluster:

∀c ∈ [1, k],∀oi ∈ Cc,∃oj ∈ Cc, oj 6= oi ∧ d(oi, oj) ≤ ε

Such a constraint tries to capture the notion of density, introduced in DBSCAN. We propose
a new density-based constraint, stronger than the ε-constraint: it requires that for each point
oi, its neighborhood with radius ε contains at least MinPts belonging to the same cluster
as oi.

In the last ten years, many works have been done to extend classical algorithms for handling must-
link and cannot-link constraints, as for instance an extension of COBWEB [26], of k-means [27, 4],
hierarchical non supervised clustering [7] or spectral clustering [17, 28], etc. This is achieved either
by modifying the dissimilarity measure, or the objective function or the search strategy. However,
to the best of our knowledge there is no general solution to extend traditional algorithms to
different types of constraints. Our framework relying on Constraint Programming allows to add
directly user-specified constraints.

3 Constraint Programming

Constraint Programming (CP) is a powerful paradigm for solving combinatorial search problems
that relies on a wide range of techniques from Artificial Intelligence, Computer Science and Op-
erational Research. The main principles in CP are: (1) users specify the problem declaratively in
a Constraint Satisfaction Problem; (2) solvers search for solutions by constraint propagation and
search. A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where:

• X = {x1, x2, ..., xn} is a set of variables,

• D = {D1, D2, ..., Dn} is a set of domains, with xi ∈ Di,

• C = {C1, C2, ..., Ct} is a set of constraints, each Ci is a condition on a subset of X.

A solution of the CSP is a complete assignment of a value ai ∈ Di to each variable xi, such that
all constraints in C are satisfied. A Constraint Optimization Problem (COP) is a CSP associated
to an objective function. In this case, the optimal solution is a solution of the CSP that optimizes
the objective function.

In general, CSPs are NP-hard. However, techniques used in CP solvers allow to solve many
practical applications efficiently. Most popular techniques are constraint propagation, branching
and search.

8

Figure 1: constraint graph and value graph of exemple 2

3.1 Constraint Propagation

Constraint propagation consists of removing values from the domain of some variables when it
can be determined that the values cannot be in any solution of a constraint. Propagation is done
by propagators: each constraint is realized by a set of propagators, depending on which kind
of consistency the constraint is considered. If propagators implement the arc-consistency for a
constraint, they can remove any inconsistent values of the domain with respect to the constraint.
If they implement the bound-consistency for a constraint, they only modify the upper or the lower
bound of the variable domains.

The objective of the consistency techniques is to detect values of variables that can not be in
the solution with the help of constraints. The consistency techniques try to detect inconsistent
assignments as soon as possible to prune the search space.

Example 1 Assume we have 2 variables x1, x2 taking integer values in [1, 4] with the constraint:
x1 < x2 − 1. Consistency techniques can reduce the domain of x1 and x2 without loss of any
solution, D1 = {1, 2} and D2 = {3, 4}.

We present in this section basic consistency algorithms for unary and binary constraints. Nor-
mally, a CSP can be represented by a constraint graph where variables are nodes and constraints
corresponds to hyper-arcs. To express domain of variables, a value graph can be used. It is a
bipartie graph whose vertices are divided into two disjoint sets: a set of vertices from variables
and a set of vertices from values. Every edge in the value graph connect a vertice of variable to a
vertice of value.

Example 2 Assume we have 4 variables x1, x2, x3 and x4 and their domains are: x1 ∈ [1, 2], x2 ∈
[2, 3], x3 ∈ [1, 3], x4 ∈ [1, 2] with the constraints: x1 6= x2, x1 6= x3, x2 6= x3, x2 6= x4, x3 6= x4.
Constraint graph and value graph of this CSP are expressed in figure 1. The consistency techniques
try to detect inconsistent assignments, or they try to remove as many edges as possible in the value
graph. The value graph of this CSP after constraint prograpation is expressed in figure 2

Node Consistency Node Consistency is the simplest technique. A variable xi is node consis-
tency iff for every value of the current domain Di, each unary constraint on xi is satisfied. A CSP
is node consistent iff all variables xi are node consistent.

Example 3 Assume the variable x1 taking integer values in [1, 10] with the unary constraint:
x1 > 3. By applying node consistency algorithm, we can delete values [1, 3] from D1. D1 is now
[4, 10].

9

Figure 2: value graph after constraint propagation

Algorithm 5: Node consistency algorithm

1 forall the variable xi do
2 forall the value ai in Di do
3 if unary constraint on X is inconsistent with ai then
4 delete ai from Di;

Arc Consistency Arc Consistency is used to guarantee the consistency of each binary con-
straint. An arc (xi, xj) is arc consistent iff for every value ai in the current domain of Di there
are some values aj of Dj so that (ai, aj) satisfy the binary constraint between xi and xj . A CSP
is arc consistent iff every arc (xi, xj) is arc consistent.

Algorithm 6: Arc Consistency-1 algorithm

1 repeat
2 CHANGED ← FALSE ;
3 forall the arc(xi, xj) do
4 CHANGED ← Revise(xi, xj) ∨ CHANGED;

5 until not CHANGED;

Function Revise(xi, xj)

1 DELETED ← false forall the value ai in Di do
2 if there is no aj in Dj such that (ai, aj) satisfies all binary constraints on (xi, xj) then
3 delete ai in Di;
4 DELETED ← true;

5 return DELETED

In this basic arc consistency algorithm, all the arcs will be revised again if any inconsistency
is detected and removed. Many other arc consistency algorithms (AC-2, . . . , AC-7) therefore
proposed to reduce the number of revises.

Example 4 Assume the variables x1, x2 and x3 taking integer values in [1, 4] with constraints:
x1 < x2 and x2 < x3. Suppose that arcs will be revised in the order (x1, x2), (x2, x1), (x2, x3),
(x3, x2).

• we first select the arc (x1, x2) and remove the value 4 from D1 because if x1 = 4, we cannot
find a value for x2 such that x1 < x2

10

Figure 3: constraint graph and value graph of exemple 4

• arc (x2, x1) is revised and the value 1 is removed from D2 for the same reason.

• arc (x2, x3) is revised and the value 4 is removed from D2. Now D1 = [1, 3], D2 = [2, 3], D3 =
[1, 4]

• arc (x3, x2) is revised and the value 1 and 2 is removed from D3. Now D1 = [1, 3], D2 =
[2, 3], D3 = [3, 4]

• all the arcs are revised again: when revising (x1, x2), the value 3 is removed from D1

• Finally D1 = [1, 2], D2 = [2, 3], D3 = [3, 4]

Constraint graph and value graph of this CSP after constraint propagation are expressed in figure
3.

The Arc Consistency techniques reduce significant by the search space in many CSPs but there
still exists many other possible inconsistencies.

Example 5 Assume the variables x1, x2 and x3 taking integer values in [1, 2] with constraints:
x1 6= x2, x2 6= x3 and x3 6= x1. The Arc Consistency techniques can not detect any inconsistencies
in this case, where there is no solution.

Path Consistency Path Consistency is stronger than Arc Consistency, it detects inconsistencies
in every path in the constraint graph. In fact, the Path Consistency Techniques remove more
inconsistencies but it is too costly and is not efficient in most of CSPs. Moreover, the Path
Consistency is not able to detect all of inconsistencies.

Global Constraint A global Constraint is a constraint stated on a set of variables. It is equiv-
alent to a conjunction of elementary constraints. It is used to simplify the modeling of a problem
and more importantly, to exploit the semantics of constraint for efficient propagation. Its consis-
tency is normally stronger than the combination of Arc Consistency on elementary constraints and
it is often performed by an filtering algorithm based on graph theory or operations research tech-
niques. From the literature in constraint programming, there are more than 350 global constraints
issued1. Some common global constraints are :

• The alldifferent constraint constrains values of variables to be pairwise different. A solution
of the alldifferent constraint is equivalent to a maximum matching in a bipartite graph.
Filtering algorithm for the alldifferent constraint can use matching theory to prune any
values that are not in any maximum matching.

1A catalog of global constraints can be found at http://www.emn.fr/z-info/sdemasse/gccat/

11

• The global cardinality constraint (gcc) restricts the number of times a values can be appeared
in the solution. A solution to gcc constraint is equivalent to a particular network flow and
filtering algorithm for this constraint uses the residual network.

• The knapsack constraint corresponds to the classical knapsack problem. This constraint is
defined on 0-1 variables where xi represents the belonging of item i to the knapsack. This
problem is NP-Hard but a weak filtering algorithm for this constraint can be obtained with
a low complexity.

3.2 Search and Strategies

Solvers search for solutions by recursively combining two steps: constraint propagation and branch-
ing. The solver propagates all the constraints until reaching a stable state, where either the domain
of a variable is reduced to the empty set or no variable domain can be reduced. In the first case,
there is no solution and the solver backtracks. In the other case, if all the variable domains are sin-
gleton, a solution is reached, otherwise the solver chooses a variable whose domain is non-singleton
and splits the domain into two or more parts, which creates two or more branches in the search
tree. The solver explores then each branch, where constraint propagation becomes reactive again,
because of the modifications of a variable domain.

The search tree exploration strategy can be defined by the user. In a depth-first search strategy,
the solver orders the branches in the order specified by the user and explores in depth each branch
to find solutions. In an optimization problem, a branch-and-bound strategy is obtained from a
depth-first search: each time the solver reaches a solution of the CSP, the value of the objective
function on the solution is calculated and a new constraint is added that forbids all solutions which
are not better than this one.

Strategies of choosing variables and of choosing values are extremely important, since they
can reduce drastically the search tree. For more details, we refer to the text book on Constraint
Programming by [24].

3.2.1 Variable Ordering

The ordering in which variables are instantiated can affect the search space of backtrack search.
The underlying idea is to detect the failure early to avoid useless branchings. Since all variables
have to be instantiated, variable is chosen in order to maximally reduce the search space or add
constraints. Therefore different heuristics may be used during the search to determine the next
variable to be instantiated.

• The variable with the smallest domain is selected for instantiation.

• The variable that participated in a most number of constraints is selected.

• The variable that has the largest number of constraints with instantiated variables.

The order of values of variables is important, a correct choice of values can help to reduce
search tree. The example below demonstrates the importance of the variable ordering.

Example 6 Find distinct digits for the letters S,E,N,D,M,O,R, Y such that

S E N D
+ M O R E
= M O N E Y

In this problem, we can define a variable with the domain [0, 9] for each letter with following
constraints:

• AllDifferent(S, E, N, D, M, O, R, Y)

• S 6= 0,M 6= 0

12

Figure 4: Search space with the strategy: The variable with the smallest domain is selected for
instantiation

• 1000S+100E+10N +D+1000M +100O+10R+E = 10000M +1000O+100N +10E+Y

By using consistency techniques, we can reduce the domain of variables to: DS = {9}, DE =
[4, 7], DN = [5, 8], DD = [2, 8], DM = {1}, DO = {0}, DR = [2, 8], DY = [2, 8]. Figures 4 and 5
show different search trees with different strategies for the next variable to be instantiated. These
search trees are generated by Gist environment of the Gecode solver where blue circle is a stable
state but not yet a solution, red square is a fail state (there is no solution), green diamond is an
intermediate solution and the orange diamond is the optimal solution.

3.2.2 Branching strategy

In the backtracking algorithm, a node p = {x1 = a1, . . . , xj = aj} in the search tree is a set of
assignments of instantiated variables. A branching extends p by selecting a variable xi that is not
instantiated and adding the branches for assignments of xi. Three popular branching strategies
are often used:

• Enumeration: A branch is generated for each value in the domain of the variable.

• Binary choice points: The variable xi is instantiated by a 2-way branching. Assuming the
value ai is chosen for branch, two branches are generated with xi = ai and xi 6= ai.

• Domain splitting: Here the domain of the variable is split to create the branching. For
example, assume the value ai is chosen for the split, two branches are generated with xi ≤ ai
and xi > ai.

3.2.3 Branch-and-bound technique

To solve optimization CSPs, the common approach is to use branch-and-bound techniques. Ini-
tially, a backtracking search is used to find any solution p which satisfies all the constraints. An
additional constraint is added to the CSP when a solution is found allowing to forbid solutions that
are not better than this solution. The solvers continue to search for solutions of the new CSP until
the CSP is unsatisfiable. The last solution found has been proven optimal. Moreover, heuristic
can be used to prune more the search space. The heuristic here is a function h that calculate
the bound from values of instantiated variables. The efficiency of this technique is affected how
quickly we can improve the bound:

• Whether a good solution which is close to the solution optimal is found early: When a
solution is found, the lower bound (in case the CSP consists of minimizing a function) is
updated and a good bound can be obtained from a good solution.

13

Figure 5: Search space with the strategy: The variable with the biggest domain is selected for
instantiation

• Quality of the heuristic function: A better heuristic can calculate better lower/upper bounds
from less number of instantiated variables.

Let us consider the following example for an illustration of Constraint Optimization Problem
and search strategies.

Example 7 We have to find an assignment of digits to letters such that

S E N D
+ M O S T
= M O N E Y

and where the value of MONEY is maximized. We can model this problem as a Constraint Opti-
mization Problem, where we use eight variables S,E,N,D,M,O, T, Y , whose domain is the set of
digits [0, 9]. Constraints which specify the problem are:

• the letters S and M must not be 0: S 6= 0, M 6= 0

• all the letters are pairwise different: alldifferent(S,E,N,D,M,O, T, Y)

(note that instead of using the constraint 6= on each pair of variables, we use this very one
constraint, which is stated on all variables, this constraint is called a ”global constraint” in
CP, the same kind as the following linear constraint)

• (1000S+100E+10N+D)+(1000M+100O+10S+T) = 10000M+1000O+100N+10E+Y

• maximize(1000M + 1000O + 100N + 10E + Y)

The optimal solution of this problem is the assignment S = 9, E = 7, N = 8, D = 2,M =
1, O = 0, T = 4, Y = 6, with MONEY = 10876. Initial propagation from these constraints leads
to a stable state with the domains DS = {9}, DE = {2, 3, 4, 5, 6, 7}, DM = {1}, DO = {0},
DN = {3, 4, 5, 6, 7, 8} and DD = DT = DY = {2, 3, 4, 5, 6, 7, 8}. Strategies consist of the way to
chose variables and for each chosen variable, the way to chose values. If variables are chosen in the

14

Figure 6: Search trees

order S,E,N,D,M,O, T, Y and for each variable, the remaining values in its domain are chosen
in an increasing order, the search tree has 29 states with 7 intermediate solutions (solution which
is better than the precedent). However, if variables are chosen in the order S, T, Y,N,D,E,M,O,
the search tree has only 13 states with 2 intermediate solutions. These two search trees are showed
in Figure 6. For each stable state, the left branch is the case where the chosen variable is assigned
to the chosen value, the right branch is the other case where the chosen value is removed from the
domain of the chosen variable. It is worth to notice that it is an exhaustive search, the returned
solution is guaranteed to be optimal.

4 Related works

Recent advances in CP make the framework powerful to solve data mining problems. Several
works aims at modeling data mining problems, and particularly clustering problems in a CP
framework. L. De Raedt, T. Guns and S. Nijssen present in [11] a CP framework for modeling
the itemset mining problem. They present in [16] a framework for k-patterns set mining and show
how it can be applied to the conceptual clustering. The problem consists of finding k-patterns
that do not overlap and cover all the transactions: each transaction can be viewed as an object
and each pattern can be viewed as a cluster, two objects are similar if they share the same itemset.
Conceptual clustering generates a concept description for each cluster and here, the concept is the
itemset. For modeling the problem, boolean variables are used to model the presence of each item
and each transaction in each pattern. Constraints and reified constraints express the relationship
of covering, non-overlapping, etc. Additionnal constraints can be added to express the criterion
function: maximize the minimum size of cluster or minimize the difference between cluster sizes.

P. Boizumault, B. Crémilleux et al. present in [5] and [18] a constraint-based language ex-
pressing queries to discover patterns in data mining. Queries are expressed by constraints over
terms that are built from constraints, variables, operators and function symbols. The constraint
conceptual clustering problem can be expressed in this language. The language is translated into
a set of clauses and a SAT solver is used to solve the clustering task.

These works consider the conceptual clustering problem, where clusters are non-overlapping
partitions on qualitative databases. Our approach considers the clustering problem in its original
form and is capable to proceed on qualitative or quantitative databases.

A SAT-based framework for constraint-based clustering has been proposed by I. Davidson,
S. Ravi and L. Shamis in [9]. The problem is however limited to only two clusters and is then
transformed to a 2-SAT problem, which is polynomial. In this work, both instance-level constraints
and cluster-level constraints are modeled. The model also allows users to add criterion function
based on the diameter or the separation of clusters. The optimization algorithm is based on the

15

binary search for the criterion value, at each step the upper-bound or the lower-bound of this
value is modified, and a 2-SAT solver is used to determine if all the constraints are satisfied with
these bounds. Our approach based on constraint programming includes all the search and the
constraint satisfaction, and is more general since the number of clusters is not limited to 2.

Mueller et al. proposed in [19] an approach to constrained clustering based on integer linear
programming. This approach takes a set of candidate clusters as input and construct a clustering
by selecting a suitable subset. It allows constraints on the degree of completeness of a clustering,
on the overlap of clusters and it supports set-level constraints which restrict the combinations of
admissible clusters. This approach is different as it takes into account constraints on candidate
clusters, but not constraints on individual objects. It has different function objectives: optimizing
the minimum, the mean and the median of the individual clusters’ qualities in a clustering. Their
framework is flexible and guarantees a global optimum but requires a set of candidate clusters. This
condition makes the framework to be less convenient for clustering in general as finding a good
set of candidate clusters is a difficult task and the number of candidate clusters is exponential
compared to the number of points. However, this approach is more suitable for the itemset
classified clustering or conceptual clustering where objects are itemsets and candidate clusters
might be created from frequent itemsets.

Because of the difficulty of the problems, most algorithms are heuristics. For instance, k-
means is a heuristic algorithm finding a local optimum for the WCSS criterion. There are few
exact algorithms for the WCSD and WCSS criteria, they rely on lower bounds, which must be
computed in a reasonable time and this is a difficult subtask. The best known exact method
for both WCSD and the maximum diameter criterion is a repetitive branch-and-bound algorithm
(denoted by RBBA in the experiment section) proposed in [6]. This algorithm is efficient when the
number k of groups is small; it solves the problem first with k+ 1 objects, then with k+ 2 objects
and so on, until all n objects are considered. When solving large problems, smaller problems are
solved for quickly calculating good lower bounds. The authors give the size n of the databases that
can be handled: n = 250 for the minimum diameter criterion, n = 220 for the WCSD criterion, and
only n = 50 with k up to 5 or 6 for the WCSS criterion, since in this case, the lower bound is not
very sharp. For this WCSD criterion, the best known exact method is a recent column generation
algorithm proposed in [1]. The authors solve problems with up to 2300 objects; however, the
number of objects per group (n/k) should be small, roughly equal to 10, in order to solve the
problem in reasonable time. To the best of our knowledge, there exists no exact algorithms for
WCSD or WCSS criterion that integrate user-constraints.

5 A CP framework for constraint-based clustering

We present a CP model for constrained clustering. As input, we have a dataset of n points
(objects) and a distance measure between pairs of points, denoted by d(oi, oj). Without loss of
generality, we suppose that points are indexed and named by their index. The number of clusters
is fixed by the user and we aim at finding a partition of data into k clusters, satisfying a set of
constraints specified by the user and optimizing a given criterion.

5.1 Model

Variables For each cluster c ∈ [1, k], the point with the smallest index is considered as the
representative point of the cluster. An integer variable I[c] is introduced, its value is the index of
the representative point of c; the domain of I[c] is therefore the interval [1, n]. This representative
point must not be confused with the notion of representative in the medoid approach. Here it
only allows to have a single representation of a cluster.

Assigning a point to a cluster is equivalent to assigning the point to the representative of the
cluster. Therefore, for each point i ∈ [1, n], an integer variable G[i] ∈ [1, n] is introduced: G[i] is
the representative point of the cluster of i.

16

Let us for instance suppose that we have 7 points o1, . . . , o7 and that we have 2 clusters, the
first one composed of o1, o2, o4 and the second one composed of the remaining points. The points
are denoted by their integer (o1 is denoted by 1, o2 by 2 and so on). Then I[1] = 1 and I[2]
= 3 (since 1 is the smallest index among {1, 2, 4} and 3 is the smallest index among {3, 5, 6, 7}),
G[1] = G[2] = G[4] = 1 (since 1 is the representative of the first cluster) and G[3] = G[5] = G[6] =
G[7] = 3 (since 3 is the representative of the second cluster).

A variable is also introduced for representing the optimization criterion. It is denoted by
D for the maximal diameter, S for the minimal margin and V for the Within-Cluster Sums of
Dissimilarities. They are real variables, since distance are real numbers. The domains of the
variables D and S are the intervals the lower bound is the minimal distance between two points
and the upper bound is the maximal distance between any pair of points. The domain of V is
upper bounded by the sum of the square distances between all pairs of points. Our model allows
to find an optimal solution satisfying the following constraints.

Constraints on the representation. The relations between points and their clusters are ex-
pressed by these constraints:

• A representative belongs to the cluster it represents:

∀c ∈ [1, k], G[I[c]] = I[c].

• Each point must be assigned to a representative: for i ∈ [1, n],∨
c∈[1,k]

(G[i] = I[c]).

This can be expressed by a cardinality constraint:

∀i ∈ [1, n], #{c | I[c]=G[i]} = 1.

• The representative of a cluster is the point in this cluster with the minimal index; in other
words, the index i of a point is greater or equal to the index of its representative; given by
G[i]:

∀i ∈ [1, n], G[i] ≤ i.

A set of clusters could be differently represented, depending on the order of clusters. For instance,
in the previous example, we could have chosen I[1] = 3 and I[2] = 1, thus leading to another
representation of the same set of clusters. To avoid this symmetry, the following constraints are
added:

• Representatives are sorted in increasing order:

∀c < c′ ∈ [1, k], I[c] < I[c′].

• The representative of the first cluster is the first point:

I[1] = 1.

17

Modeling different objective criteria. Different constraints are added, depending on the
criterion to optimize.

• When minimizing the maximal diameter:

– Two points at a distance greater than the maximal diameter must be in different clus-
ters: for all i, j ∈ [1, n] such that i < j

d(i, j) > D → (G[j] 6= G[i] ∧ G[j] 6= i) (7)

– The maximal diameter is minimized: minimize D.

• When maximizing the minimal margin between clusters:

– Two points at a distance less than the minimal margin must be in the same cluster.
For all i, j ∈ [1, n] such that i < j

d(i, j) < S → G[j] = G[i] (8)

– The minimal margin is maximized: maximize S.

• When minimizing the Within-Cluster Sums of Dissimilarities (WCSD):

– Let V the variable measuring WCSD,

V =
∑

i,j∈[1,n]

(G[i] == G[j])d(i, j)2 (9)

– minimize V

Modeling user-defined constraints The model allows to extend the framework by adding
new constraints. The following user-defined constraints may be straightforwardly put on clusters:

• A constraint on the minimal size α of clusters:

∀c ∈ [1, k],#{i | G[i]=I[c]} ≥ α.

• A constraint on the maximal size β of clusters:

∀c ∈ [1, k],#{i | G[i]=I[c]} ≤ β.

• The δ-constraint expresses that the margin between two clusters must be at least δ. There-
fore, for each i < j ∈ [1, n] satisfying d(i, j) < δ, we put the constraint:

G[i] = G[j]

• The diameter constraint expresses that the diameter of each cluster must be at most γ,
therefore for each i < j ∈ [1, n] such that d(i, j) > γ, we put the constraints:

G[j] 6= G[i]

• The density constraint that we have introduced expresses that each point must have in its
neighborhood with radius ε, at least MinPts points belonging to the same cluster as itself.
So, for each i ∈ [1, n], the set of points in its ε-neighborhood is computed and a constraint
is put on its cardinality:

#{j | d(i, j) ≤ ε,G[j]=G[i]} ≥MinPts

18

• A must-link constraint on two points i and j is represented by:

G[i] = G[j]

• A cannot-link constraint on i and j is expressed by:

G[i] 6= G[j]

Adding such constraints involves other constraints on D or S, as for instance G[i] = G[j] implies
D ≥ d(i, j) and G[i] 6= G[j] implies S ≤ d(i, j).

5.2 Model improvement

Since constraint propagation allows to reduce the search space by deleting values in the domain
of variables that cannot lead to solutions, CP solvers perform an exhaustive search, allowing to
find an optimal solution. Different aspects are considered to improve the efficiency of the model.

Improvement by ordering the points Variables of I are chosen in the order I[1], . . . , I[k]
and for each variable, the index for representatives are chosen in an increasing order. The way
points are indexed is therefore very important. Points are ordered and indexed, so that points
that are possible representatives have the smallest index. In order to achieve this, we rely on FPF
algorithm, introduced in Section 2. We apply it with k = n (as many classes as points): a first
point is chosen, the second point is the furthest object from this point, the third one is the furthest
object from the two first and so on until all points have been chosen.

Improvement when minimizing the maximal diameter Let us consider first the case where
no user-defined constraints are put in the model. In [14], it is proven that if dFPF represents the
maximal diameter of the partition computed by FPF, then it satisfies dopt ≤ dFPF ≤ 2dopt,
with dopt the maximal diameter of the optimal solution. This knowledge gives us bounds on D:
D ∈ [dFPF /2, dFPF]. Moreover, for each pair of points i, j :

• if d(i, j) < dFPF /2, the reified constraint (7) on i, j is no longer put,

• if d(i, j) > dFPF , the constraint (7) is replaced by a cannot-link constraint : G[j] 6= G[i].

Such a result allows to remove several reified constraints, without modifying the semantics of the
model, and thus allows to improve the efficiency of the model, since handling reified constraints
requires to introduce new variables.

In the case where user constraints are added, this result is no longer true, since the optimal di-
ameter is in general greater than the optimal diameter dopt obtained with no user constraints. The
upper bound is no longer satisfied but we still have the lower bound, namely dFPF /2. Therefore
for each pair of points i, j, if d(i, j) < dFPF /2,the constraint (7) on i, j is not put.

Improvement when minimizing WCSD Computing WCSD (9) requires to use a linear con-
straint on boolean variables (G[i] == G[j]). However, a partial assignment of points to clusters
does not allow to filter the domain of the remaining values, thus leading to an inefficient constraint
propagation. We have proposed a new method in the sub section below for propagating this con-
straint and filtering the domain of remaining variables. A new branching strategy for minimizing
WCSD is also proposed for better computing.

19

5.3 Filtering algorithm for the criterion sum constraint

The constraint (9) for the criterion WCSD can be implemented by a linear sum constraint V =∑
i<j Sijd(i, j)2 on boolean variables Sij , with reified constraints Sij = (G[i] == G[j]). However,

these constraints, while considered independently, do not offer enough propagation. For example,
with k = 2, given 4 points 1 to 4 and a partial assignment where G[1] = 1 and G[2] = G[3] = 2.
We have three boolean variables S14, S24, S34 with Si4 = (G[i] == G[4]). Let us assume that
during a branch-and-bound search, the upper bound of V is set to 4, and with the minimization of
V the constraint S14 + 2S24 + 3S34 < 4 is added. We can see that S24 and S34 must be equal since
G[2] = G[3] and then must not be equal to 1, otherwise the constraint is violated. We should then
infer that point 4 cannot be in the same cluster as points 2 and 3, so value 2 should be removed
from the domain of G[4]. This filtering however is not done, since the constraints are considered
independently.

Several recent works have proposed more efficient filtering for the sum constraint, when it is
considered with other constraints. For a sum constraint y =

∑
xi with inequality constraints

xj − xi ≤ c, a domain filtering algorithm reduces the domain of xi when new bounds for y are
known [22]. A bound-consistency algorithm is proposed for a sum constraint with increasing order
constraints xi ≤ xi+1[20] or with a constraint alldifferent(x1, . . . , xn)[3]. Our constraint however
does not fit these cases. A generic bound-consistency algorithm for a sum constraint with a set of
constraints is proposed in [21]. In our case, the domain of G[i] is a set of representative indices,
which is not an interval in general, and where we wish to remove any inconsistent value. We have
therefore developed a filtering algorithm for a new global constraint on a variable V , an array of
variables G of size n and an array of constants a, which is of the form:

V =
∑

1≤i<j≤n

(G[i]==G[j])aij . (10)

Taking into account the partitioning problem, the domain of each variable G[i] is a set of the
representative indices of all clusters, into which point i can be assigned. Let us assume that
V ∈ [V.lb, V.ub] and we have a partial assignment of variables in G, where there is at least one
point assigned for each group (e.g the representative of the group, cf. sub-section 5.4). Let K be
the set of points i which have been already assigned to a group (G[i] is instanciated) and U the
set of the unassigned points. The sum in (10) is split into three parts:∑

i,j∈K,i<j,G[i]=G[j]

aij +
∑

i∈U,j∈K
(G[i]==G[j])aij +

∑
i<j,i,j∈U

(G[i]==G[j])aij

An exact value v1 is calculated for the first part. For the second part, a lower bound v2 can be
defined by

∑
i∈U v2i, where v2i is the minimal added amount when point i ∈ U will be assigned to

a group, with respect to the points in K, v2i = minc(
∑

j∈K∩Cc
aij). Let us calculate now a lower

bound v3 for the third part. Let p = |U |, what is the minimal number of pairwise connections
between any two points in the same group, while considering all possibilities of assignment of p
points into k groups? For example with p = 10, k = 3 this minimal number is 12, corresponding
to a partition with 2 groups of 3 points and 1 group of 4 points. Let m be the quotient of
the division of p by k and m′ the remainder. Let the number of points in each group c be
m + αc, with αc < 0 when the group c has less than m points, αc ≥ 0 otherwise. We have then∑

1≤c≤k(m+ αc) = p = km+m′, so m′ =
∑

1≤c≤k αc. The total number of connections between
any two points in the same group is:∑

1≤c≤k(m+ αc)(m+ αc − 1)/2 = (
∑

1≤c≤k(m+ αc)
2 −

∑
1≤c≤k(m+ αc))/2

= (km2 + 2mm′ +
∑

1≤c≤k α
2
c − km−m′)/2

≥ (km2 + 2mm′ − km)/2

The equality is reached when αc is 1 for m′ groups and is 0 for k −m′ groups. We denote by
f(p) the formula (km2 + 2mm′ − km)/2. With a set U of unassigned points, with the constants

20

aij (i, j ∈ U) ordered increasingly, a lower bound v3 is then calculated by the sum of the f(|U |)
first constants in this order. It is worth to notice that when any point in U is assigned to a group,
the new lower bound v′3 for the remaining points in U is greater or equal to the sum of f(|U | − 1)
first constants in this order (we name it by v4 in Algorithm 7), i.e. v′3 ≥ v4.

The filtering algorithm is presented in Algorithm 7. This algorithm uses arrays add and min,
where add[i, c] is the added amount if i is assigned to group c (add[i, c] =

∑
j∈K∩Cc

aij) and m[i] is
the minimal added amount while considering all possible assignments for i (m[i] = minc add[i, c]).
Since the constants aij must be ordered increasingly, they are ordered once in the array ord, so
ord[pos] gives the constant aij in the order at position pos, and px[pos] (py[pos]) gives the index
i (j, resp.) of the constant. At the moment, the filtering algorithm is developed for the clustering
task, where values in the domain of G[i] are the representative of all clusters for which point i can
be assigned. Given an index a, the function gr(a) gives the number of the cluster corresponding
to a.

Algorithm 7: Filtering algorithm

1 v1 ← 0; v2 ← 0; v3 ← 0; v4 ← 0;
2 for i← 1 to n where G[i] is instanciated do
3 for j ← 1 to n do
4 if G[j] is instanciated and G[j] == G[i] and i < j then v1 ← v1 + aij ;
5 if G[j] is not instanciated then add[j, gr(G[i])]← add[j, gr(G[i])] + aij ;

6 for i← 1 to n where G[i] is not instanciated do
7 m[i]← add[i, 1];
8 for c← 2 to k do
9 if add[i, c] > 0 and m[i] > add[i, c] then m[i]← add[i, c];

10 v2 ← v2 +m[i];

11 p← number of uninstanciated variables in G;
12 cpt← 0; pos← 1;
13 while cpt < f(p) do
14 i← px[pos]; j ← py[pos];
15 if G[i] is not instanciated and G[j] is not instanciated then
16 cpt← cpt+ 1;
17 v3 ← v3 + ord[pos];
18 if cpt ≤ f(p− 1) then v4 ← v4 + ord[pos];

19 pos← pos+ 1;

20 V.lb← max(V.lb, v1 + v2 + v3);
21 for i← 1 to n where G[i] is not instanciated do
22 foreach value a ∈ Dom(G[i]) do
23 if V.lb+ add[i, gr(a)]−m[i]− v3 + v4 > V.ub then
24 delete a from Dom(G[i]);

The lower bound of V is revised in line 20. Lines 21 to 24 filter the domain of G[i] (i ∈ U): for
each value a in the domain, in case of assignment of i into group gr(a), a new lower bound for V is
(v1+add[i, gr(a)])+(v2−m[i])+v′3, which is greater or equal to V.lb+add[i, gr(a)]−m[i]−v3+v4,
so if this value is greater than the actual upper bound of V , a is inconsistent.

The complexity of this algorithm is O(n2 +nk), since the domain of each G[i] is of size at most
k. Since k ≤ n, the complexity is then O(n2).

21

5.4 Search strategies

Let us recall that a solver iterates two steps: constraint propagation and branching when needed.
Variables are chosen first those in I, then those in G, which means the cluster representatives are
first identified, points are then assigned to clusters. Since a cluster representative I[c] must have
the smallest index among those in the cluster, values for I[c] are chosen in increasing order. Point
index are then really important, by consequent, points are ordered previously in such a way that
those which are more likely to be representative have small index. We use FPF (Furthest Point
First) heuristic [14] to reorder points.

The branching on uninstanciated variables in G finds a variable G[i] and a value c in the
domain of G[i] and makes two alternatives: G[i] = c and G[i] 6= c. To improve the efficiency of
the model, different branching strategies for variables in G are used:

• When minimizing the maximal diameter or maximizing the minimal margin between clusters:
Variables G[i] are chosen so that the ones with the smallest remaining domain are chosen
first. Among those which have the smallest domain size, the variable G[i] with smallest
index i is chosen. For instantiating G[i], the index of the closest representative is chosen
first.

• When minimizing the Within-Cluster Sums of Dissimilarities: A mixed strategy is used.
The variable G[i] is always selected among those which have the smallest domain size. The
value c is always the representative of the closest group to point i. Because an upper bound
is necessary for the constraint (10), a greedy search is used first to find quickly a solution.
In this step, G[i] and c are selected to make sure that the value of V will increase as little
as possible. The solution found in general is quite good. After first solution, the search
strategy is changed to a “first-fail” search, which tends to cause the failure early. In this
strategy, the branching will try to make alternatives on frontier points, i.e. those that make
most changes on V .

6 Experimentations

6.1 Datasets and methodology

Eleven data sets are used in our experiments. They vary significantly in their size, number of
attributes and number of clusters. Nine data sets are from the UCI repository ([2]): Iris, Wine,
Glass, Ionosphere, WDBC, Letter Recognition, Synthetic Control, Vehicle, Yeast. For the data
set Letter Recognition, only 600 objects of 3 classes are considered from the 20.000 objects in the
original data set, they are composed of the first 200 objects of each class. The data sets GR431
and GR666 are obtained from the library TSPLIB ([23]); they contain coordinates of 431 and 666
cities in European [15]. These two data sets do not contain the information about the number of
clusters k and we choose k = 3 for the tests. Table 1 summarizes informations about these data
sets.

There are few works dealing with finding the best optimum, and as far as we know no work
in the framework of user constraint. In the case with no user-constraints, our model is compared
to the Repetitive Branch-and-Bound Algorithm (RBBA) defined in [6]2, which, to the best of
our knowledge, is the best exact algorithm for minimum diameter partitioning and minimum
within-cluster sums of dissimilarities partitioning. Our model is implemented with the Gecode
4.0.0 library3. In this newest version of Gecode released in 2013, float variable is supported. This
property is important for our model to obtain exact optimal value. The distance between objects
are the Euclidean distance and the dissimilarity is measured as the squared Euclidean distance.
Since there is no exact algorithms that handle user-constraints, we aim at showing the ability of
our model to handle different kinds of user constraints.

2The program can be found in http://mailer.fsu.edu/ mbrusco/
3http://www.gecode.org

22

Table 1: Properties of data sets used in the experimentation

Data set # Objects # Attributes # Clusters
Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
Ionosphere 351 34 2
GR431 431 2 not available
GR666 666 2 not available
WDBC 569 30 2
Letter Recognition 600 16 3
Synthetic Control 600 60 6
Vehicle 846 18 4
Yeast 1484 8 10

Table 2: Comparison of performance with the minimum diameter criterion

Data set Optimal Diameter Our Model RBBA
Iris 2.58 0.03s 1.4s
Wine 458.13 0.3s 2.0s
Glass 4.97 0.9s 42.0s
Ionosphere 8.60 8.6s > 2 hours
GR431 141.15 0.6s > 2 hours
GR666 180.00 31.7s > 2 hours
WDBC 2377.96 0.7s > 2 hours
Letter Recognition 18.84 111.6s > 2 hours
Synthetic Control 109.36 56.1s > 2 hours
Vehicle 264.83 14.9s > 2 hours
Yeast 0.67 2389.9s > 2 hours

Experiments with our model and with RBBA programs are all performed on a PC Intel core
i5 with 3.8 GHz clock and 8 Gigabytes of Ram memory. The time limit for each test is 2 hours.

6.2 Minimizing maximum diameter without user-constraint

Table 2 shows the results for the minimum diameter criterion. The first column gives the data
sets, whereas the second column reports the optimal values of the diameter. They are the same
for both our model and the RBBA approach, since both approaches find the global optimal. The
third and fourth columns give the total CPU times (in seconds) for each approach.

The results show that RBBA found the optimal diameter only for the first three data sets.
In [6], the authors also mention that their algorithm is effective for databases with less than 250
objects. Table 2 shows that our model is able to find the optimal diameter for partitioning a data
set with up to n = 1484 objects and k = 10 clusters. The performance does not only depend on the
number of objects n and on the number of groups k, but also on the separation of objects and on
the database features. The behavior of our model differs form classical models: for instance, when
the number of clusters k increases, the search space is larger and in many approaches, solving
such a problem takes more computational time. Indeed, as shown in Table 3, since there are
more clusters, the maximum diameter is smaller, and propagation of the diameter constraint is
more effective, thus explaining that in some cases, it takes less computational time. As already
mentioned, they may exist several partitions with the same optimal diameter; because of the search
strategy of Constraint Optimization Problem in CP, our model finds only one partition with the
optimal diameter.

23

Table 3: Data set GR666 with the minimum diameter criterion

k=2 k=3 k=4 k=5
Total time = 1.21s Total time = 30.69s Total time = 5.03s Total time = 33.51s
Diameter = 224.63 Diameter = 180.00 Diameter = 141.15 Diameter = 115.13

6.3 Minimizing maximum diameter with user-constraints

Let us consider now the behavior of our system with user-constraints with the Letter Recognition
dataset. Figure 7 presents the results when must-link constraints (generated from the real class
of objects) and a separation constraint δ (the margin between two clusters must be at least δ) is
used. The number of must-link constraints varies from 0.01% to 1% the total number of pairs of
objects where δ ranges from 3% to 12% the maximum distance between two objects. Regarding
to the results, both must-link and separation constraints boost the performance for this data set
as they reduce the search space (or the number of feasible solutions).

Results in Table 4 show different partitions with user-constraint of separation on the data set
GR666 with the number of clusters k = 2. The minimum separation constraint varies from 1%,
4% and 7% the maximum distance between two objects. The results show that with appropriate
user-constraint, a user can get more meaningful partition.

6.4 Minimizing Within-Cluster Sums of Dissimilarities

Minimizing the Within-Cluster Sums of Dissimilarities (WCSD) is a difficult task since the prop-
agation of the sum constraint is less efficient than the propagation of the diameter constraint.
Without users-constraints, both our model and the RBBA approach can find the optimal solu-
tions only with the Iris dataset. Our model needs 4174s to complete the search whereas the RBBA
approach takes 3249s. However, with appropriate user-constraints, the performance of our model
can be significantly improved.

WCSD and separation constraint Let us add a separation constraint δ (the margin between
two clusters must be at least δ), where δ ranges from 0% (no constraint) to 12% of the maximum
distance between two objects. Table 5 reports the WCSD value of an optimal solution with the
total time for computation. It shows that when the separation constraint is weak, the optimal
WCSD value does not change. But the computation time decreases significantly when this ad-
ditional constraint becomes stronger. The reason is that the total number of feasible solutions
decreases and the search space is reduced. When the separation constraint is weak, propagating
this constraint is more time-consuming than its benefits. With appropriate user-constraints, user
can find meaningful partition while the optimal solution is always guaranteed.

24

Figure 7: Must-link and separation constraints for WCSD with data set Iris

2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

0

20

40

#must-link constraint (%)

to
ta

l
ti

m
e(

s)

δ = 3% max Distance

δ = 6% max Distance

δ = 9% max Distance

δ = 12% max Distance

No user-constraint separation ≥ 1% max Dist separation ≥ 4% max Dist separation ≥ 7% max Dist
Total time = 1.21s Total time = 1.21s Total time = 1.12s Total time = 0.98s
Diameter = 224.63 Diameter = 224.63 Diameter = 224.63 Diameter = 349.49

Table 4: database GR666 with separation constraint

Table 5: Separation constraint with data set Iris

Separation Constraint WCSD Total time
no constraint 573.552 4174s
δ = 2% max Distance 573.552 1452s
δ = 4% max Distance 573.552 84.4s
δ = 6% max Distance 573.552 0.3s
δ = 8% max Distance 2169.21 0.1s
δ = 10% max Distance 2412.43 0.04s
δ = 12% max Distance 2451.32 0.04s
δ = 14% max Distance No Solution 0.04s

25

Table 6: Must-link constraints with data set Iris

must-link Constraints WCSD Total time
no constraint 573.552 4174s

0.2% 602.551 1275.1s
0.4% 602.551 35.6s
0.6% 617.012 16.1s
0.8% 622.5 3.5s
1% 622.5 1.6s

100% 646.045 0.04s

Table 7: Example of appropriate combinations of user-constraints

Data set User constraints WCSD Total time
Wine separation: δ = 1.5% max Distance 1.40× 106 11.2s

minimum capacity: β = 30
GR666 separation: δ = 1.5% max Distance 1.79× 108 12.4s

diameter: γ = 50% max Distance
Letter Recognition # must-link constraints = 0.1% total pairs 5.84× 106 11.5s

cannot-link constraints = 0.1% total pairs
separation: δ = 10% max Distance

Vehicle separation: δ = 3% max Distance 1.93× 109 1.6s
diameter: γ = 40% max Distance

WCSD and must-link constraint Let us now add must-link constraints, where the number of must-
link constraints, generated from the real class of objects, varies from 0.2 to 1% of the total number
of pairs. Results are expressed in Table 6, giving the WCSD value and the total computation time.
In fact, the optimal value of WCSD, with no information on classes, does not correspond to the
WCSD found when considering the partition of this dataset into the 3 defined classes. The more
must-link constraints, the less computation time is needed for finding the optimal value, and the
closer to the value of WCSD, when considering the 3 initial classes. The reduction of computation
time can be easily explained, since when an object is instantiated, objects that must be linked
to it are immediately instantiated too. Furthermore, with any kind of additional constraint, the
total number of feasible solutions is always equal or less than the case with no constraint.

WCSD and appropriate user-constraints Finding an exact solution minimizing the WCSD
is difficult. However, with appropriate combination of user-constraints, the performance can be
boosted. Table 7 presents some examples where our model can get an optimal solution with
different user-constraints, which reduce significantly the search space.

6.5 Quality of the solution

The possibility of combining different constraints allows to find the desired solution and generally
improves the quality of the solution found. We consider three data sets 2D which are similar to
those used in [12]. The data are shown in Figure 8.

In the first data set, there are four groups of different diameters. The second data set is more
difficult because the groups have different shapes. With the criterion of minimizing maximum
diameter, the solver finds groups wich homogeneous diameters, so this criterion alone is not very
suitable, as shown in Figure 9. The addition of a separation constraint, with the parameter δ is
equal to 5% of the maximum distance between pairs of points, significantly improves the quality
of the solution, as presented Figure 10. Note that the criterion of maximizing the minimum
separation also allows you to find the solution.

26

Figure 8: Data sets

Figure 9: Criterion of diameter

Figure 10: best solution

27

Figure 11: Minimize the maximal diameter

Figure 12: Maximize the minimal separation

The third database contains separate points (outliers). Our model does not detect outliers,
so these points are also clustered. The criterion of minimizing maximum diameter(Figure 11) or
maximizing minimum separation (Figure 12) does not find a good solution. However, the quality
of the solution is much improved when a density constraint is added, with MintPts = 4 and ε is
equal to 25% maximum distance between pairs of points (Figure 13).

7 Conclusion

We have proposed a declarative framework for Constrained Clustering based on Constraint Pro-
gramming. It allows to choose among different optimization criteria and to integrate various kinds
of constraints. One of the advantage of Constraint Programming, besides its declarative, is that

Figure 13: Criterion of separation with density constraints

28

it allows to find an optimal solution, whereas most approaches find only local optima. On the
other hand, complexity makes it difficult to handle very large databases. Nevertheless, integrating
constraints enables to reduce the search space, depending on their ability to filter the domain
of variables. Moreover, working on search strategies and on constraint propagation enables to
increase the efficiency and to deal with larger problems.

In the future, we plan to work more on the search strategies and on the constraint propagators,
thus being able to address bigger databases. We do believe that global constraints adapted to the
clustering tasks must be developed. From the Data Mining point of view, more optimization
criteria should be added. In the other side, the filtering algorithm for the WCSD criterion could
be generalized to be used in other constraint satisfaction problems.

References

[1] Daniel Aloise, Pierre Hansen, and Leo Liberti. An improved column generation algorithm for
minimum sum-of-squares clustering. Math. Program., 131(1-2):195–220, 2012.

[2] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[3] Nicolas Beldiceanu, Mats Carlsson, Thierry Petit, and Jean-Charles Régin. An o(nlogn)
bound consistency algorithm for the conjunction of an alldifferent and an inequality between
a sum of variables and a constant, and its generalization. In ECAI 2012 - 20th European
Conference on Artificial Intelligence, pages 145–150, 2012.

[4] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in
semi-supervised clustering. In Proceedings of the Twenty-First International Conference on
Machine Learning, pages 11–18, 2004.

[5] Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, Samir Loudni, and Jean-Philippe
Métivier. Discovering Knowledge using a Constraint-based Language. CoRR, abs/1107.3407,
2011.

[6] Michael Brusco and Stephanie Stahl. Branch-and-Bound Applications in Combinatorial Data
Analysis (Statistics and Computing). Springer, 1 edition, July 2005.

[7] I. Davidson and S. S. Ravi. Agglomerative hierarchical clustering with constraints: Theoret-
ical and empirical results. Proceedings of the 9th European Conf. on Principles and Practice
of Knowledge Discovery in Databases, pages 59–70, 2005.

[8] Ian Davidson and S. S. Ravi. Clustering with Constraints: Feasibility Issues and the k-Means
Algorithm. In Proc. 5th SIAM Data Mining Conference, 2005.

[9] Ian Davidson, S. S. Ravi, and Leonid Shamis. A SAT-based Framework for Efficient Con-
strained Clustering. In SDM, pages 94–105, 2010.

[10] L. De Raedt, T. Guns, and S. Nijssen. Constraint Programming for Data Mining and Machine
Learning. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[11] Luc De Raedt, Tias Guns, and Siegfried Nijssen. Constraint programming for itemset mining.
In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 204–212, 2008.

[12] Martin Ester, Hans P. Kriegel, Jorg Sander, and Xiaowei Xu. A Density-Based Algorithm
for Discovering Clusters in Large Spatial Databases with Noise. In Second International
Conference on Knowledge Discovery and Data Mining, pages 226–231, Portland, Oregon,
1996. AAAI Press.

29

[13] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[14] T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science, 38:293–306, 1985.

[15] Martin Grötschel and Olaf Holland. Solution of large-scale symmetric travelling salesman
problems. Math. Program., 51:141–202, 1991.

[16] Tias Guns, Siegfried Nijssen, and Luc De Raedt. k-Pattern set mining under constraints.
IEEE Transactions on Knowledge and Data Engineering, 2011. Accepted.

[17] Zhengdong Lu and Miguel A. Carreira-Perpinan. Constrained spectral clustering through
affinity propagation. In 2008 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, June 2008.

[18] Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, and Samir
Loudni. Constrained Clustering Using SAT. In IDA 2012, LNCS 7619, pages 207–218, 2012.

[19] Marianne Mueller and Stefan Kramer. Integer linear programming models for constrained
clustering. In Discovery Science, pages 159–173, 2010.

[20] Thierry Petit, Jean-Charles Régin, and Nicolas Beldiceanu. A θ(n) bound-consistency algo-
rithm for the increasing sum constraint. In Principles and Practice of Constraint Programming
CP 2011, pages 721–728, 2011.

[21] Jean-Charles Régin and Thierry Petit. The objective sum constraint. In Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
CPAIOR 2011, pages 190–195, 2011.

[22] Jean-Charles Régin and Michel Rueher. Inequality-sum: a global constraint capturing the
objective function. RAIRO - Operations Research, 39(2):123–139, 2005.

[23] G. Reinelt. TSPLIB - A t.s.p. library. Technical Report 250, Universität Augsburg, Institut
für Mathematik, Augsburg, 1990.

[24] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Program-
ming. Foundations of Artificial Intelligence. Elsevier B.V., Amsterdam, Netherlands, August
2006.

[25] Michael Steinbach, Pang-Ning Tan, and Vipin Kumar. Introduction to data mining. Addison-
Wesley, us ed edition, May 2005.

[26] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proceedings of the
Seventeenth International Conference on Machine Learning, pages 1103–1110, 2000.

[27] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering with
background knowledge. In Proceedings of the 8th Int. Conf. on Machine Learning, pages
577–584, 2001.

[28] Xiang Wang and Ian Davidson. Flexible constrained spectral clustering. In KDD ’10: Pro-
ceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 563–572, 2010.

30

