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Abstract

We consider a simple imperative language with fork/join parallelism and lexi-
cally scoped nested atomic sections from which threads can escape. In this context,
our contribution is the precise definition of atomicity, well-synchronisation and the
proof that the latter implies the strong form of the former. A formalisation of our
results in the Coq proof assistant is also available.
Keywords: atomic sections, well-synchronisation, program traces, formal seman-
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1 Introduction

The multi-core trend in architectures development is widening the gap between pro-
gramming languages and hardware. Improving performances now comes at the price
of a deep software renewal because it cannot be done without taking parallelism on
board. Unfortunately, current mainstream programming languages fail to provide suit-
able abstractions to do so. The most common pattern relies on the use of mutexes to
ensure mutual exclusion between concurrent accesses to a shared memory. It is widely
accepted that this model is error-prone and scales poorly by lack of modularity. In this
context, the user is responsible for preserving some sequences of operations from in-
terference. This is typically done by mapping the target (a collection of data) of such
operations to a lock to be held when executing the sequence. Different mappings cor-
respond to different choices of granularity, e.g. during a list update one can choose to
protect the whole list or simply the updated item and its neighbourhood. A coarse grain
helps keeping the code simple, but in general leads to poor performances. On the op-
posite, a fine grain leads to better performance but the complexity growth is inversely
proportional. Despite an important effort of the community to help users in specifying
such mappings, mainstream programming languages still do not offer support for doing
so mainly because current proposals fail in handling programs in which the mapping
changes dynamically. Quoting [20], ownership is in the eye of the Asserter.

Recent research proposes atomic sections as an alternative. In this context, the user
simply delimits regions that should be free from interference; the responsibility for en-
suring interference freedom is left either to the compiler or to the run-time system.
Proposals for implementing atomic sections fall in two categories, depending on the
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choice of an optimistic or pessimistic approach to concurrency. The former relies on
transactions [23, 16], a well established mechanism in database management systems.
Intuitively, in this approach, sections are executed optimistically, assuming no inter-
ference, but cancelled if any interference occurs. For a discussion on issues raised by
the implementation of transactions in a programming language, readers are referred
to [6, 8]. The latter relies on lock inference [14, 7], sections are executed pessimisti-
cally, enforcing mutual exclusion between sections by means of locks. With [5] we
consider that transactions are a mean, an implementation technique, to ensure atom-
icity. The same remark holds for lock inference and the two approaches could even
be combined. For example, lock inference could be used to help a transaction based
system to deal with I/O.

At first glance, and independently of the underlying implementation, atomic sec-
tions seem more simple to learn compared to more classical synchronisation primi-
tives [9]. However, it is not yet clear whether they can be efficiently implemented [22]
and whether they are really simpler, considering formal semantics and reasoning about
programs. Some systems allow the nesting of transactions [19, 3] while others do
not [23], thus leading to poor modularity. When nesting is possible one needs to define
precisely the meaning of spawning threads within an atomic section. In [18], two prim-
itives for thread creation are proposed: The first one delays the creation until the end
of the section (if it is created inside), and the second one forces the thread to live en-
tirely inside the transaction. In [14], nesting is allowed but the lock inference scheme
prevents an atomic section inside another one to run before the enclosing section ter-
minates when they access the same memory location; because each section must own
the lock associated with location. More importantly, one needs to define precisely the
meaning of atomicity in this context.

In this paper we do not consider implementation issues but focus on the semantics of
atomic sections. We consider a simple imperative language with fork/join parallelism
and lexically scoped atomic sections. It supports the nesting of atomic sections and
threads are allowed to escape from surrounding sections. Meaning that there is no
synchronisation between the end of a section and the termination of threads started
within this section. The semantics of the language is as permissive as possible and is
not tied to any particular implementation. More precisely, we consider program traces
satisfying some basic well-formedness conditions and, more importantly, satisfying the
weak atomicity property, i.e there is no interference between concurrent sections. In this
context, our contribution is the precise definition of atomicity, well-synchronisation and
the proof that the latter implies the strong form of the former (up-to an equivalence
relation over traces). A formalisation in Coq [24, 4] of our results is available.

We first precise the context of this work with some related work (Section 2). We
then describe the semantics domains of our work including the characterisation of well-
formed traces (Section 3). We then present our notion of well synchronised traces
(Section 4). Section 5 is devoted to our notion of atomicity and to the proof sketch for
the main result. We conclude and give future research directions in Section 6. To ease
the use of the formalisation of this work in Coq, we give in Section A a correspondance
between the definitions and results presented in the paper and their counterparts in
Coq.
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2 Related Work

Atomic sections have produced many implementations, mainly using transactions, start-
ing from only hardware based [13], to software based [23, 12, 11]. However in general,
they did not allow parallelism (and so nesting) in atomic sections. Several papers try
to improve these lacks.

Harris [10] proposed to improve composability of atomic sections by adding to them
new constructions, like the possibility of specifying another atomic section in case of
failure of the first one. But there is still no parallelism or nesting in atomic sections.

The need for nesting was expressed by Moss et al., in [19], by pointing out the
example of library use, but also by the fact that atomic sections are less monolithic,
and thus lighter. However they restrict their system by disallowing concurrency within
an atomic section whereas they still allow it for top level ones. This restriction aims to
ease the conflict detection and allows to optimise implementation.

The combination of nested parallelism and nested atomic sections was proposed by
Agrawal et al. in [3]. They chose structural parallelism instead of pthread usually used,
and thus they rely on a tree representation for the parallelism and atomic sections. Each
inner atomic section must be terminated before the atomic section parent completes.

These works focus on efficient implementations. The next ones look over the se-
mantics of atomic sections.

Jagannathan et al. gave operational semantics of a derived version of Featherweight
Java with nested and multi-thread atomic sections, independent of any implementation
in [15]. They allow nesting but each child atomic section must terminate before its
parent. Their work on the proof of atomicity presents some similarities to ours. To prove
the correctness of their work, they use program traces to abstract from the operational
semantics, and shows the serialisability, i.e. for any abort-free program, there must be
a corresponding trace where atomic sections are executed serially.

In [18], Moore et al. pointed out common problems found in several implemen-
tations: the precise meaning of atomicity and unnecessary limitations of parallel nest-
ing. To avoid the problem related to the unclear model of atomicity (weak or strong),
their advice is to give a semantics with proofs on atomicity. They illustrate it through
four languages, and one of them allows parallel nesting with two primitives for thread
spawning. The first one spawns threads which must live entirely inside the parent sec-
tion, and so can only create inner-sections, and the other one delays the spawning at
the end of the parent section, and so these threads can only create sub-sections that
live outside. We acknowledge the same fact about the unnecessary limitations, and we
go further by letting threads escaping from atomic sections

In [1], Abadi et al. wanted also to face the problem associated with weak and
strong atomicity, with the development of transactions based on the automatic mutual
exclusion model. In their representation, only one atomic section can be executed at a
time. They show that existing implementations of transactions can lead to surprising
behaviour due to the weak semantics. They present the semantics of their language,
and with some restrictions they can give the behaviour of strong atomicity but with a
permissive implementation.

5



3 Semantics Domain

We consider a kernel imperative language with dynamic creation of threads com-
municating through a shared memory. Synchronisation of concurrent accesses to this
memory is ensured by means of atomic sections which can be nested and support inner-
parallelism. Threads forked within a section can escape from its scope, i.e. they may
continue their executions after the section terminates. We argue that this asynchronous
behaviour of threads, with respect to surrounding atomic sections, benefits to programs
modularity. This choice contrasts with that of [18] where threads must either complete
before the section may terminate, or run after termination of the section (depending
on the choice of the primitive used for spawning the thread).

We base our study on partial program traces (Section 3.1) and abstract from pro-
gram syntax by stating some well-formedness properties (Section 3.2). In particular,
we assume that weak atomicity, i.e. non interference of concurrent atomic sections, is
ensured by the run-time system through some mutual exclusion mechanism. Because
we consider inner-parallelism and thread-escape, the definitions of interference and
concurrency between atomic sections require specific care. One must define precisely
which threads and atomic sections should be considered as part of an atomic section.

3.1 Traces

We assume disjoint countable sets of memory locations, thread names and section
names, elements of which are respectively noted `, t and p, possibly with subscript.
The set of values, elements of which are noted v, possibly with subscripts, contains at
least memory locations, integers and thread names.

Actions, events and traces. We define the set of actions, elements of which are noted
a, possibly with subscripts, as follows.

a ::= | τ
| alloc ` n | free ` | read ` n v | write ` n v
| fork t | join t | open p | close p

Intuitively, τ denotes an internal, non observable, action. An action alloc ` n denotes
heap allocation of a block of size n at memory location ` and an action free ` removes
such a block from the heap. An action read ` n v (resp. write ` n v) denotes a read
(resp. write) access from (resp. to) the offset n from location ` and v is the read (resp.
written) value. Actions fork t and join t respectively denote creation and join on a
thread t. Finally, open p and close p respectively denote section opening and closing.
Note that section names are purely decorative and have no operational contents, this
will be formalised in well-formedness conditions in Section 3.2. Their sole purpose is to
name occurences of atomic sections occurring in traces. An event e is a pair of a thread
name and an action, a trace s is a sequence of events.

(events) e ::= (t, a) (traces) s ::= ε | s · e
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Notations We note s1s2 the concatenation of partial traces (or traces for short) s1 and
s2 where by abuse of notation e stands for ε · e. For i ∈ N, we define the partial function
πi by π0(es) = e and πn+1(es) = πn(s). We respectively note πact

i (s) and πtid
i (s) the first

and second projections over the event πi(s). We note e ∈ s, if there exists i such as
πi(s) = e, and by extension a ∈ s if πact

i (s) = a.

Definitions To define precisely what should be considered as part of an atomic sec-
tion, we introduce some auxiliary definitions. Given a trace s, the relations owners and
fathers respectively relate a section to its owner thread and a thread to its father. The
relation ranges denotes the range of a section. By convention, we state that a section
p ranges up to the last position of a trace s if p is pending in s. For a well-formed trace
s, as defined in Section 3.2, the relations owners, fathers and ranges will define partial
functions.

owners p t , (t, open p) ∈ s fathers t t
′ , (t′, fork t) ∈ s

πact
s (i) = open p πact

s (j) = close p

ranges p (i, j)

πact
s (i) = open p close p 6∈ s

ranges p (i, |s| − 1)

It is now possible to define precisely which threads and atomic sections should be con-
sidered as part of a section. Given a section p of a trace s, the relation tribes p is defined
as the least set of thread identifiers containing the owner of the section and threads
forked as a side effect of executing the section (relation tribeChildrens).

ranges p (i, j) i < k ≤ j
owners p t

′ πk(s) = (t′, fork t)

tribeChildrens p t

tribeChildrens p t
′ fathers t t

′

tribeChildrens p t

owners p t

tribes p t

tribeChildrens p t

tribes p t

Intuitively, if t belongs to tribes p then the thread t is part of the computation of the
atomic section p and thus should not be considered as an interfering thread. In the
same way, we define a relation over section names stating that an atomic section is part
of the computation of another. We say that p′ is a subsection of p if p bs p

′, as defined
below, holds.

ranges p (i, j) i < k ≤ j owners p t πk(s) = (t, open p′)

p bs p′

tribeChildrens p t owners p
′ t

p bs p′ p bs p

Finally, two atomic sections are said to be concurrent if p ^s p
′, as defined in (1), holds.

(1) p ^s p
′ , p 6bs p

′ ∧ p′ 6bs p
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3.2 Well-formed traces

In this section we state formally some well-formedness conditions over program traces.
Those conditions can be seen as a specification for possible implementations of our
language. They range from common sense conditions to design choices.

To formalise these conditions we use the following definitions: The predicate sees
which can be seen as an over-approximation of the information flow in s, and is defined
as the transitive closure of (2); the relation ≺s on section names defined at (3).

(2)

i < j πtid
s (i) = t πtid

s (j) = t

sees i j

i < j πact
s (i) = fork t πtid

s (j) = t

sees i j

i < j πact
s (i) = write ` n v πact

s (j) = read ` n v

sees i j

(3) p ≺s p
′ , ∃i, j. i < j ∧ πact

s (i) = close p ∧ πact
s (j) = open p′

A trace s is well-formed if it satisfies the conditions in Figure 1 which are explained
below:

• Condition (wf1), ensures that section and thread names respectively identify dy-
namic sections and threads. Conditions (wf2) and (wf3) state simple properties of
sections names. Each close action matches a previous open action which should
be performed by the same thread. Moreover, each close action of a thread matches
the last opened, but not yet closed, section opened by the same thread. As far as
section names are concerned, those conditions impose no restrictions over the
implementation as section names are purely decorative.

• Conditions (wf4) and (wf5) state usual properties of fork/join instructions.

• Condition (wf6) states that termination of a thread cannot be observed by another
thread if the former has pending sections. An implementation can choose either
to prevent termination of threads having pending sections or to force closing of
such sections on termination. Condition (wf7) states that it is not possible for a
thread to join another thread without having explicitly received its name. These
conditions ensure that external threads will not interfere with an atomic section
by observing termination of inner threads. These conditions match the intuition
that atomic section should appear as taking zero-time and thus termination of
threads within a section should not be observable before the section is closed.

• Condition (wf8) states that concurrent sections do not overlap.

A trivial result is that the subsection relation safely over-approximates overlapping
of atomic sections in well-formed traces. Note that, in the absence of thread escape,
the two notions would coincide.
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Every action open p, close p and fork t occurs at most once in s.(wf1)

∀i, p. πact
s (i) = close p⇒ ∃j. j < i ∧ πact

s (j) = open p ∧ πtid
s (i) = πtid

s (j)(wf2)

∀p, i, j. ranges p (i, j)⇒ πact
s (j) = close p⇒

∀k, p′. i < k < j ⇒ πtid
s (i) = πtid

s (k)⇒ πact
s (k) = open p′ ⇒

∃j′, k < j′ < j ∧ πact
s (j′) = close p′

(wf3)

∀i, t. πact
s (i) = fork t⇒ ∀j. πtid

s (j) = t⇒ i < j(wf4)

∀i, t. (πtid
s (i) = t ∨ πact

s (i) = fork t)⇒ ∀j. πact
s (j) = join t⇒ i < j(wf5)

∀p, i, j, t. ranges p (i, j)⇒ owners p t⇒ ∀k. πacts (k) = join t⇒ j < k(wf6)

∀t, i, j. πact
s (i) = fork t⇒ πact

s (j) = join t⇒ sees i j(wf7)

∀p, p′, open p ∈ s⇒ open p′ ∈ s⇒ p ^s p
′ ⇒ p ≺s p

′ ∨ p′ ≺s p(wf8)

Figure 1: Well-Formedness Conditions

Lemma 1 For all well-formed traces s, sections p ranging from i to j in s and k such that
i ≤ k ≤ j and πact

s (k) = open p′, for some p′, we have p bs p
′.

Sketch of Proof By hypothesis and conditions (wf1) and (wf2) we have neither p 6≺s

p′ nor p′ 6≺s p. From (wf8) it comes p bs p
′ or p′ bs p. Suppose that p and p′ are opened

by distinct threads t and t′ (otherwise i ≤ k ≤ j entails the result by definition of bs)
and p′ bs p. By definition of bs it comes tribeChildrens p

′ t. It is then immediate that
πact
k (s) = open p′ and πtid

i (s) = t imply k < i, thus contradicting the hypothesis. ut

4 Well Synchronised Traces

An important aspect is to identify what kind of isolation is offered by atomic sections.
Traditionally two kinds of atomicity can be distinguished [17]. In the weak form the
atomic sections are protected only against other sections. It means that instructions
outside sections can interfere with data accessed in atomic sections. In this case atomic
sections only provide a weak form of protection. On the contrary, with strong atomicity,
code inside an atomic section is totally protected both from code in other sections and
code outside sections.

As stated in section 3, we rely on the run-time system to ensure some weak-atomicity
property: With condition (wf8) concurrent sections do not overlap. Traditionally, we
define a notion of well-synchronisation which provides a sufficient condition for ensur-
ing strong atomicity (as defined in section 5). To do so we define the notion of conflict
over actions by the relation on given in Figure 2 and state that a trace is well-synchronised
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read ` n v on write ` n v′

write ` n v on read ` n v′

write ` n v on write ` n v′

i < j πtids (i) = t πtids (j) = t

sws i j

i < j πacts (i) = fork (t) πtids (j) = t

sws i j

i < j πtids (i) = t πacts (j) = join (t)

sws i j

i < j πacts (i) = close p πacts (j) = open p′ p ^s p
′

sws i j

Figure 2: Synchronisation

if a synchronisation occurs between any two events involving conflicting actions. Syn-
chronisation between two events is defined by sw which is the least predicate defined
by the transitive closure of rules in Figure 2.

Intuitively, we consider a high-level programming language in which well-synchronisation
should not be seen as an additional programming constraint. Indeed, in such languages
the user is not expected to deal with non sequentially consistent executions and is re-
sponsible for writing data-race free programs. Moreover, thread names and memory
locations are assumed to be values of opaque data-types. In particular, there must ex-
ist some communication (and thus some synchronisation in well-synchronised traces)
between the allocation of a location (resp. the fork of a thread) and any access to
that location (resp. join on that thread). Concerning threads names this is ensured by
condition (wf7). We do not impose an equivalent condition for memory locations here
because it is useless to our purpose but in practice we will consider programs satisfying
such a property.

Now we can define our property of well-synchronisation, by requiring each conflict-
ing action to be in synchronisation.

Definition 1 A trace s is well-synchronised if for any conflicting actions a and a′ occurring
respectively at position i and j in s such as i < j, we have sws i j.

The following lemma states that in well-synchronised traces information cannot
flow without synchronisation.

Lemma 2 For all well-synchronized traces s we have sees k k′ ⇒ sws k k
′ for all k and k′.
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Figure 3: Two examples of ill-formed trace

Sketch of Proof Immediate by induction on the proof of sees k k′. ut

Examples We expect, in a trace both well-formed and well-synchronised, that a sec-
tion is free from outside interference. This motivates well-formedness conditions (wf6)
and (wf7). Without these conditions, traces of Figure 3 would be well-formed and
well-synchronised traces but they have indeed a problem of interference. The white
and black dots respectively denote fork and join actions. The atomic sections are sym-
bolised by rounded boxes. “w” and “r” respectively represent write and read operations
on the same given memory location (and we assume this memory location is not used
elsewhere inside section p). In both cases the red write operation interferes with the
read action on this memory location inside section p. Without the join action done
by thread t0, the two conflicting write operations would not be synchronised. Condi-
tion (wf7) forbids the join in the first case, and condition (wf6) forbids it in the second
case.

We can now link our notion of section and synchronisation to express a property on
tribes. The following proposition states that in well-synchronised traces members of a
tribe cannot synchronise with non-members while the section is active. An immediate
corollary is that in well-synchronised traces actions of members of a section cannot
conflict with actions of non members while the section is active.

Proposition 1 For all well-formed and well-synchronised traces s, sections p ranging from
i to j in s, and k, k′ such that i ≤ k, k′ ≤ j and sws k k

′ we have tribes p t ⇒ tribes p t
′

where πtid
s (k) = t and πtid

s (k′) = t′.

Sketch of Proof Let p be a section ranging from i to j in s and let k′ be such that
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i ≤ k′ ≤ j and πtid
s (k′) = t′ for some t′. We consider the property:

P (k0) ≡ ∀k, t′. i ≤ k0 ≤ j ∧ i ≤ k ≤ j ∧ sws k k0 ∧ πtid
s (k) = t ∧ πtid

s (k0) = t′∧
tribes p t⇒ tribes p t

′

Now suppose that P (k0) holds for all k0 < k′. We prove that P (k′) holds by induction
on the derivation of sws k k

′.

• If πtid
s (k) = πs(k

′) or πact
s (k) = fork(t′) the result is immediate by definition of

tribe.

• Suppose that πact
s (k′) = join(t). By (wf6) we have tribeChildrens,pt and then, by

definition of tribe, we can find some k0 and t0 such that i < k0 < k′, tribes,p t0 and
πact
s (k0) = fork(t). By (wf7) it comes sees,p k0 k′. By definition of see, it is easy

to check that πact
s (k′) = join(t) implies that there exists some k1 < k′ such that

either πtid
s (k1) = t′ or πact

s (k1) = fork(t′) and either k0 = k1 or sees k0 k1. If k0 = k1
then the result is immediate. Otherwise, P (k1) holds by induction hypothesis and
by Lemma 2 we have sws k0 k1. By definition of tribe it comes tribes,p t′.

• Suppose that πact
s (k) = close(p′) and πact

s (k′) = open(p′′) for some p′ and p′′. The
result is immediate by Lemma 1.

• The induction step is immediate by applying twice the induction hypothesis.
ut

5 Atomicity

In this section, we prove that well-formed and well-synchronised traces satisfy the
strong atomicity property. More formally, we prove that well-synchronised traces are
serialisable, i.e. any such trace is equivalent to a serial trace. A serial trace [21], is tra-
ditionally defined as a trace obtained by a program where atomic sections are executed
serially i.e. without interleaving. This definition suits well without inner-parallelism.
But in our case an interleaving of “allowed” threads is possible during the execution of
the section. That is why we have to define our own notion of seriability. To define the
notion of serial trace, we must take care that sections support nesting, inner-parallelism
and thread-escape.

This is exactly the purpose of the notion of tribe which captures the set of threads
that should be allowed to run while a section is active.

Definition 2 A trace s is serial if for all sections p and positions i, j and k such that
ranges p (i, j) and i ≤ k ≤ j we have tribes p t where πtid

s (k) = t.

Definition 3 A trace s is serialisable if there exists a serial trace s′ that is equivalent to s.

We now need to define formally what it means for two traces to be equivalent.
Usually, traces are defined to be equivalent up to re-orderings preserving the order of
conflicting actions, for a broader definition of conflicting actions than the one we use.
For technical purpose, we consider a stronger definition of equivalence.
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Definition 4 Two traces s and s′ are equivalent, noted s ≡ s′, if there exists a bijection γ
between positions of s and s′ such that

πs(i) = πs′(γ(i)) for all i < |s|(e1)
sws i j ⇔ sws′ γ(i) γ(j) for all i, j < |s|(e2)

Proposition 2 For all well-formed and well-synchronised traces s, and for all traces s′, if
s ≡ s′ then s′ is well-formed and well-synchronised.

Sketch of Proof The proof of well-synchronisation is done by examining the order
between positions in the two traces and exploiting the properties of the bijection to
show that these positions are still in synchronisation. The proof of well-formedness is
done for each of the eight conditions, using properties of the bijection. ut

Theorem 1 Every well-formed and well-synchronised trace is serialisable.

Sketch of Proof The proof is by structural induction on s. The result is obvious for
the empty trace. Suppose s · (t, a) is a well-formed and well-synchronised trace. Then s
is both well-formed and well-synchronised because these properties are prefix-closed.
By induction hypothesis, there exists s′ such that s′ ≡ s and s′ is serial.

Then we prove that s′ · (t, a) ≡ s · (t, a). The bijection used (noted γ) is the same
than in s ≡ s′ for all positions < |s| and γ(|s|) = |s′|. The proof of condition (e1) of
equivalence is trivial. The trickiest part of condition (e2) is when we have sws·(t,a) i |s|
so we have to prove sws′·(t,a) γ(i) γ(|s|). We know that πs(i) = πs′(γ(i)) and πs·(t,a)(|s|) =
πs′·(t,a)(γ(|s|)) = (t, a). By an induction on sws·(t,a) i |s| we can conclude.

By Proposition 2, s′ · (t, a) is well-formed and well-synchronised.
Now we show that s′ · (t, a) is serialisable. We note excludess,p t when p is pending

in s and ¬tribes p t. Assume p is the left-most section such that excludess′,p t.

• Suppose that no such section exists. Let the positions i, j, k, the thread name
t′ and the section name p′ be such that ranges′·(t,a) p′ (i, j), πtid

s′·(t,a)(k) = t′ and
i ≤ k ≤ j. We want to prove that tribes′·(t,a) p′ t′. If k < |s′| the result is immediate
by the seriability of s′. We suppose now that k = |s′| (and then t = t′). If
πact
s′·(t,a)(k) = open p′ then k = i by (wf1), and then as the owner of the section p′,
t′ is in the tribe of p′. If πact

s′·(t,a)(k) 6= open p′ then necessarily p′ is pending in s′. By
assumption we have thus necessarily that tribes′ p′ t′ holds. As tribe is preserved
by trace concatenation, tribes′·(t′,a) p′ t′: The trace s′ · (t, a) is serial.

• If section p exists, let i be such that πact
s′ (i) = open p. We will reason using insertion

which is useful to represent the shifting of an element in a trace. Given a non-
empty trace s · e, we note s �i0 e the trace obtained by inserting e in s at position
i0. A bijection γ is induced by the insertion:

γ(k) = k if k < i γ(k) = k + 1 if i ≤ k < |s| γ(|s|) = i0
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Note γ keeps the relative order of positions lower than |s|, and its inverse for
positions different from i0. There are two important properties of insertion we
use:

For all well-formed and well-synchronised trace s · (t, a),
for all section name p and position i such that

− excludess,p t and πact
s (i) = open p

− ∀k. i ≤ k < |s| ⇒ ¬sws·(t,a) k |s|
we have s · (t, a) ≡ s �i (t, a)

(inseq)

For all well-formed trace s · (t0, a) and position i such that,
− there exists a section name p0 such that excludess,p0 t0
− ∀k. i ≤ k < |s| ⇒ ¬sws·(t0,a) k |s|
then for all p and t, tribes·(t0,a) p t⇒ tribes�i(t0,a) p t

(instribe)

Let us consider the trace s′′ = s′ �i (t, a). We now prove that s′′ is equivalent to
s · (t, a) and serial. To do so we need to use the two properties of insertion, so
first we prove: ∀k. i ≤ k < |s′| ⇒ ¬sws′·(t,a) k |s′|. Suppose sws′·(t,a) k |s′| for
a k such that i ≤ k < |s′|. By seriability of s′ we know that tribes′ p t1, where
πtid
s (k) = t1, and tribes′·(t,a) p t1 by preservation of tribe by trace concatenation. By

Proposition 1, we can conclude that tribes′·(t,a) p t. Because s′ ·(t, a) is well-formed
we know that a 6= open p and a 6= fork t. By definition of tribe we obtain that
tribes′ p t that contradicts assumption ¬tribes′ p t.
By (inseq) and transitivity, we conclude s′′ ≡ s · (t, a).
For proving that s′′ is serial, let i′, j′, k be positions, p′ a section name, t′ a thread
such that ranges′′ p′ (i′, j′), i′ ≤ k ≤ j′ and πtid

s′ (k) = t′. To prove tribes′′ p
′ t′

we first prove tribes′ p′ t′ by transposing the ranges′′ p′ (i′, j′) on s′ and use the
seriability of s′ to conclude. To do so prove that the relative positions of i′, k and
j′ are preserved by the inverse of the induced bijection γ, i.e. consider whether
each position is equal to i or not: First prove that i′ 6= i and conclude for the four
remaining cases using various well-formedness conditions. So tribes′ p′ t′ holds.

As tribe is preserved by trace concatenation, we have tribes′·(t,a) p′ t′ and by (instribe),
we conclude tribes′′ p′ t′. Therefore s′′ is serial.

ut

6 Conclusion and Future Work

We based our study on an imperative language with fork/join parallelism and lexically
scoped atomic section which supports nesting and parallelism. This parallelism does
not impose synchronisation, thus threads can escape from surrounding sections. We
design for this language a semantics independent of any implementation. Notions of
well-synchronisation and serialisability are defined that allow us to prove that all well-
formed and well-synchronised traces are serialisable.
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We used the interactive theorem prover Coq to express our definitions and lemmas,
and to check our proofs. This formalisation takes roughly 15000 lines with 30% of
definitions and proposition statements and the rest of proofs.

We have designed operational semantics of our language with atomic sections and
we are checking that a program produces well-formed traces and that a well-synchronised
program produces serialisable traces.

This is a part of a larger work where we plan to build a compiler for our language
with atomic sections toward a language with only locks. We also plan to use static
analysis (like in [2]) to improve our compilation.
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A Formalisation in Coq

The formal development in Coq is available at:

https://traclifo.univ-orleans.fr/PaPDAS/wiki/TransactionsInCoq

In the following tables we give the correspondance between the definitions and
lemmas in the paper and their counterparts in Coq. For each one we indicate its Coq
name and the Coq file. All the files are in the Transactions directory of the archive.

A.1 Lemma, Propositions and Theorem

Name Coq File
Lemma 1 wellFormed prec tribe Trace Theory.v

Lemma 2 see synchronizeWith Synchronisation.v

Proposition 1 sw in tribe Synchronisation.v

Proposition 2 compatible wellSynchronised EquivalenceTheory.v

compatible wellFormed

inseq insertion compatible SyncInsertion.v

instribe insertion tribe SyncInsertion.v

Theorem 1 wsync atomic AtomicityFinal.v
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A.2 Definitions
Name Coq File
section name t (in module Permission) Permission.v

actions action Trace.v

events t (in module Event) Trace.v

traces Tr GenericTrace.v

b sec order Trace.v

^ # Trace.v

owns owns Trace.v

father father Trace.v

≺ precedes Trace.v

see see Trace.v

range range Trace.v

tribeChildren tribeChildren Trace.v

tribe tribe Trace.v

excludes exclude Trace.v

insertion insertion Insertion.v

Definition 1 wellSynchronized Synchronisation.v

Definition 2 atomic Atomicity.v

Definition 3 atomic and compatible

Definition 4 compatible Equivalence.v

wf1 wf occurences Trace.v

wf2 wf open close Trace.v

wf3 wf seq order Trace.v

wf4 wf fork Trace.v

wf5 wf join Trace.v

wf6 wf join all closed Trace.v

wf7 wf join see fork Trace.v

wf8 wf mutual exclusion Trace.v
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