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Abstract. Constrained clustering is an important task in Data Mining. In the last ten
years, many works have been done to extend classical clustering algorithms to handle user-
defined constraints, but in general to handle one kind of constraints. In our previous work [1],
we have proposed a declarative and generic framework, based on Constraint Programming,
which enables to design a clustering task by specifying an optimization criterion and different
kinds of user-constraints. The model is designed for a clustering task which divides data in
exactly k clusters. In this paper, we present a new model for constrained clustering tasks
where the number of clusters is only upper and lower bounded. The new model is simpler
and first experiments show that it has a better performance for the diameter based criterion.

1 Introduction

Constrained clustering is an important Data Mining task, allowing to better model a clustering
task by integrating user-constraints. Several kinds of constraints can be considered, they can
be statements on the clusters, as for instance on their diameters or on pairs of objects that
must be or cannot be in the same cluster. Nevertheless designing an algorithm able to handle
different kinds of constraints is difficult and most classical approaches have been extended to semi-
supervised clustering, taking only into account one kind of constraints. In a previous work [1], we
have proposed a declarative and generic framework, based on Constraint Programming, which
enables to design a clustering task by specifying an optimization criterion and different kinds of
user-constraints either on the clusters or on pairs of objects. This model is based on a two-level
representation: a set of variables assigning a representative point to each cluster and a set of
variables assigning a representative point to each object. It requires the number of clusters to be
fixed beforehand. In this paper, we propose a simpler framework composed only of a set of variables
assigning to each object the index of the cluster it belongs to. It allows to fix an upper bound kmax

and a lower bound kmin on the number of clusters, thus leading to more flexibility when designing
the clustering task. The model will find a clustering of k clusters such that kmin ≤ k ≤ kmax where
all user-constraints are satisfied and the specified criterion is globally optimized, if there exists a
solution.

Relying on Constraint Programming (CP) has two main advantages: the declarativity, which
enables to easily add new constraints and the ability to find a global optimal solution satisfying
all the constraints while there exists solution. Recent progresses in CP have made this paradigm
more powerful and several works [2–4] have already shown its interest for Data Mining. It is
well known that the efficiency of a model based on Constraint Programming depends strongly on
the choice of the variables, which represent the elements of the problem, on the ability to break
symmetries (different representations of the same solutions), and on the search strategy. In our
previous model, the use of cluster representatives is motivated by breaking symmetries between
different representations of a same cluster set. In this new model, symmetry breaking is expressed
by a more detailed study on partitioning. The result is promising since while the model represents
more flexibility, it is simpler and eases the search strategy studies. First experiments comparing
the two models on basic benchmarks with the diameter criterion show that the new model has a
better performance.



The paper is organized as follows. In Section 2, we give background notions on clustering,
constrained clustering and constraint programming. Our previous CP model with cluster repre-
sentatives is presented in Section 3. Section 4 is devoted to the presentation of the new model and
Section 5 to experiments. A discussion on future work is given in Section 6.

2 Preliminaries

2.1 Clustering

Clustering is the process of grouping data into classes or clusters, so that objects within a cluster
have high similarity but are very dissimilar to objects in other clusters. More formally, we consider
a database of n objects O = {o1, . . . , on} and a dissimilarity measure d(oi, oj) between two objects
oi and oj of O. Clustering is often seen as an optimization problem, i.e., finding a partition of the
objects which optimizes a given criterion. Optimized criteria may be, among others:

– Minimizing Within-Cluster Sum of Dissimilarities (WCSD)

E =
k∑

c=1

∑
oi,oj∈Cc

d(oi, oj)2

where oi, oj are objects in the cluster Cc.
– Minimizing Within-Cluster Sum of Squares (WCSS) (also called the least square criterion):

E =
k∑

c=1

∑
oi∈Cc

d(mc, oi)2

where mc is the center of cluster Cc.
– Minimizing absolute-error:

E =
k∑

c=1

∑
oi∈Cc

d(oi, rc)

where rc is a representative object of the cluster Cc.
– Minimizing the maximal diameter:

E = maxc∈[1,k],oi,oj∈Cc
(d(oi, oj))

E is the maximum diameter of the clusters, where the diameter of a cluster is the maximum
distance between any two of its objects.

– Maximizing the minimal margin:

E = minc<c′∈[1,k],oi∈Cc,oj∈Cc′ (d(oi, oj))

E is the minimal margin between clusters, where the minimal margin between 2 clusters Cc, Cc′

is the minimum value of the distances d(oi, oj), with oi ∈ Cc and oj ∈ Cc′ .

Clustering task with these criteria is NP-Hard, well-known algorithms use heuristics and usually
find a local optimum. Different algorithms are developed, as for instance k-means for the WCSS
criterion, k-medoids for the absolute-error criterion or FPF (Furthest Point First) [5] for the
maximum diameter criterion.

Some algorithms do not rely on an optimization algorithm, as for instance DBSCAN [6], based
on the notion of density. Two input parameters are needed, a radius ε and a threshold MinPts,
which allows to adjust the notion of density.



2.2 Constraint-based Clustering

Most clustering methods rely on an optimization criterion, and because of the inherent complexity
search for a local optimum. Several optima may exist, some may be closer to the one expected
by the user. In order to better model the task, but also in the hope of reducing the complexity,
user-defined constraints are added, leading to Constraint-based Clustering that aims at finding
clusters that satisfy user-specified constraints. User-constraints can be classified into cluster-level
constraints or instance-level constraints.

Most of the attention has been put on instance-level constraints, first introduced in [7]. Com-
monly, two kinds of constraints are used: must-link and cannot-link. A must-link constraint spec-
ifies that two objects oi and oj have to appear in the same cluster:

∀c ∈ [1, k], oi ∈ Cc ⇔ oj ∈ Cc.

A cannot-link constraint specifies that two objects must not be in the same cluster:

∀c ∈ [1, k], ¬(oi ∈ Cc ∧ oj ∈ Cc).

Cluster-level constraints impose requirements on the clusters. The minimum (maximum) ca-
pacity constraint requires that each cluster has at least (at most) a given number α (β) of objects:
∀c ∈ [1, k], |Cc| ≥ α or ∀c ∈ [1, k], |Cc| ≤ β. The maximum diameter constraint specifies an upper
bound γ on each cluster diameter:

∀c ∈ [1, k],∀oi, oj ∈ Cc, d(oi, oj) ≤ γ

The minimum margin constraint, also called the δ-constraint in [8], specifies a lower bound δ on
the margin between clusters:

∀c ∈ [1, k],∀c′ 6= c,∀oi ∈ Cc, oj ∈ Cc′ , d(oi, oj) ≥ δ

The ε-constraint introduced in [8] requires for each point oi to have in its neighborhood of radius
ε at least another point of the same cluster:

∀c ∈ [1, k],∀oi ∈ Cc,∃oj ∈ Cc, oj 6= oi ∧ d(oi, oj) ≤ ε

This constraint tries to capture the notion of density, introduced in DBSCAN. We propose a
new density-based constraint, stronger than the ε-constraint: it requires that for each point oi, its
neighborhood with radius ε contains at least MinPts belonging to the same cluster as oi.

In the last ten years, many works have been done to extend classical algorithms for handling
must-link and cannot-link constraints, as for instance an extension of COBWEB [7], of k-means [9,
10], hierarchical non supervised clustering [11] or spectral clustering [12, 13], . . . This is achieved
either by modifying the dissimilarity measure, or the objective function or the search strategy.
However, to the best of our knowledge there is no general solution to extend traditional algorithms
to different types of constraints. Our framework relying on Constraint Programming allows to add
directly user-specified constraints.

2.3 Constraint Programming

Constraint Programming (CP) is a powerful paradigm to solve combinatorial problems, based on
Artificial Intelligence or Operational Research methods. A Constraint Satisfaction Problem (CSP)
is a triple 〈X,D,C〉 where X = {x1, x2, . . . , xn} is a set of variables, D = {D1, D2, . . . , Dn} is
a set of domains (xi ∈ Di), C = {C1, C2, ..., Ct} is a set of constraints where each constraint Ci

expresses a condition on a subset of X. A solution of a CSP is a complete assignment of values
ai ∈ Di to each variable xi that satisfies all the constraints of C. A Constraint Optimization
Problem (COP) is a CSP with an objective function to be optimized. An optimal solution of a
COP is a solution of the CSP that optimizes the objective function. In general, solving a CSP is



NP-hard. Nevertheless, the methods used by the solvers enable to efficiently solve a large number
of real applications. They rely on constraint propagation and search strategies.

Constraint propagation operates on a constraint c and removes all the values that cannot be
part of a solution from the domains of the variables of c. A set of propagators is associated to each
constraint, they depend on the kind of consistency required for this constraint (in general, arc
consistency removes all the inconsistent values, while bound consistency modifies only the bounds
of the domain). Consistency for each constraint is chosen by the programmer. Let us notice that
not all formulae or mathematic relations can be a constraint, constraints in CP are only those
for which we can design a propagation algorithm. Arithmetic and logic relations are available as
constraints, as well as more complex relations expressed by global constraints.

In the solver, constraint propagation and branching are repeated until a solution is found.
Constraints are propagated until a stable state, in which the domains of the variables are reduced
as much as possible. If the domains of all the variables are reduced to singleton then a solution is
found. If the domain of a variable becomes empty, then there exists no solution with the current
partial assignment and the solver backtracks. In the other cases, the solver chooses a variable
whose domain is not reduced to singleton and splits its domain into two parts, thus leading to
two new branches in the search tree. The solver then explores each branch, activating constraint
propagation since the domain of a variable has been modified.

The search strategy can be determined by the programmer. When using a depth-first strategy,
the solver orders branches, following the order given by the programmer and explores in depth
each branch. For an optimization problem, a branch-and-bound strategy can be integrated to
depth-first search: each time a solution, i.e. a complete assignment of variables satisfying all the
constraints, is found, the value of the objective function for this solution is computed and a new
constraint is added, expressing that a new solution must be better than this one. This implies that
only the first best solution found is returned by the solver. The solver performs a complete search,
pruning only branches that cannot lead to solutions and therefore finds an optimal solution. The
choice of variables and of values at each branching is really important, since it may drastically
reduce the search space and therefore computation time. For more details, see [14].

Example 1. Let us illustrate the behavior of a solver by the following COP: find an assign-
ment of letters to numbers so that SEND + MOST = MONEY and maximizing the value
of MONEY . This problem can be modeled by a Constraint Optimization Problem with eight
variables S,E,N,D,M,O, T, Y , the domain of which is the set of digits {0, . . . , 9}. Constraints
for this problem are:

– The digits for S and M are different from 0: S 6= 0, M 6= 0.
– The values of the variables are pairwise different: alldifferent(S,E,N,D, M,O, T, Y ). Let us

notice that instead of using a constraint 6= for each pair of variables, the constraint alldifferent
on a set of variables is used. This is a global constraint in CP, as the following linear constraint.

– (1000S+100E+10N+D)+(1000M+100O+10S+T ) = 10000M+1000O+100N+10E+Y
– Maximize(10000M + 1000O + 100N + 10E + Y ).

The initial constraint propagation leads to a stable state, with the domains: DS = {9}, DE =
{2, 3, 4, 5, 6, 7},DM = {1},DO = {0},DN = {3, 4, 5, 6, 7, 8} andDD = DT = DY = {2, 3, 4, 5, 6, 7, 8}.
Since all the domains are not reduced to singleton, branching is then performed. At the end of the
search, we get the optimal solution with the assignment S = 9, E = 7, N = 8, D = 2,M = 1, O =
0, T = 4, Y = 6, leading to MONEY = 10876.

Strategies specifying the way branching is performed is really important. When variables are
chosen in the order S,E,N,D,M,O, T, Y and for each variable, values are chosen following an
increasing order, the search tree is composed of 29 nodes and 7 intermediate solutions (solutions
satisfying all the constraints, better than the previous ones but not optimal). When variables are
chosen in the order S, T, Y,N,D,E,M,O, the search tree has only 13 nodes and 2 intermediate
solutions. The two search trees are given in Figure 1, they have been generated by the environment
Gist of the Gecode solver1. A blue circle is a stable state that is not a solution, a red square
1 http://www.gecode.org



denotes a failure (no solution possible with the current partial assignment) and a green rhombus
is an intermediate solution and the orange one is the optimal solution. Each stable state which is
not a solution leads to a branching: in the left branch, an assignment is made on a variable with a
value of its domain and in the right branch, the chosen value is removed from the domain of the
variable.

Fig. 1: Search tree.

3 CP model with cluster representatives

In [1], we have presented a Constraint Programming model for constrained clustering tasks. As
input, we have a dataset of n points and a dissimilarity measure between pairs of points, denoted
by d(i, j). Without loss of generality, we suppose that points are indexed and named by their
index. The number of clusters k is fixed by the user and the model aims at finding a partition of
data into k clusters, satisfying a set of constraints specified by the user and optimizing a given
criterion.

3.1 Variables

For each cluster c ∈ [1, k], the point with the smallest index is considered as the representative point
of the cluster2. An integer variable I[c] is introduced, its value is the index of the representative
point of c; the domain of I[c] is therefore the interval [1, n]. Assigning a point to a cluster becomes
assigning the point to the representative of the cluster. Therefore, for each point i ∈ [1, n], an
integer variable G[i] ∈ [1, n] is introduced: G[i] is the representative point of the cluster which
contains the point i.

Let us for instance suppose that we have 7 points o1, . . . , o7 and that we have 2 clusters, the
first one composed of o1, o2, o4 and the second one composed of the remaining points. The points
are denoted by their integer (o1 is denoted by 1, o2 by 2 and so on). Then I[1] = 1 and I[2] =
3 (since 1 is the smallest index among {1, 2, 4} and 3 is the smallest index among {3, 5, 6, 7}),
G[1] = G[2] = G[4] = 1 (since 1 is the representative of the first cluster) and G[3] = G[5] = G[6] =
G[7] = 3 (since 3 is the representative of the second cluster).

A variable is introduced for representing the optimization criterion. It is denoted by D for the
maximal diameter, S for the minimal margin and V for the Within-Cluster Sum of Dissimilarities.
It is a real-valued variable, since distance are real numbers. The domains of D and S are the
interval whose lower (upper) bound is the minimal (maximal, resp.) distance between any two
points. The domain of V is upper-bounded by the sum of the distances between all pairs of points.
The clustering task is represented by the following constraints.
2 It allows to have a single representation of a cluster. It must not be confused with the notion of

representative in the medoid approach.



3.2 Constraints

The constraints allow to model a partitioning with cluster representatives, different optimization
criteria and user-defined constraints.

Constraints of partitioning Theses constraints express the relation between points and their clus-
ters (representatives).

– Each representative belongs to its cluster: ∀c ∈ [1, k], G[I[c]] = I[c].
– Each point is assigned to a representative: ∀i ∈ [1, n],

∨
c∈[1,k](G[i] = I[c]). This relation can

be expressed by a “count” constraint in CP:

∀i ∈ [1, n], #{c | I[c]=G[i]} = 1. (1)

For each i ∈ [1, n], this constraint counts the number of times the value taken by G[i] appears
in the array I[1], . . . , I[k] and puts the condition that this number must be equal to 1. This
means G[i] must have a value among all the values taken by the variables I[1], . . . , I[k]. For
instance, with n = 7 and k = 2, if I[1] = 1 and I[2] = 3, then the propagation of this constraint
will reduce the domain of each G[i] into the set {1, 3}.

– The representative of a cluster is the point in this cluster with the minimal index; in other
words, the index i of a point is greater or equal to the index of its representative given by G[i]:
∀i ∈ [1, n], G[i] ≤ i.

A set of clusters could be differently represented, depending on the order of clusters. For instance,
in the previous example, we could have chosen I[1] = 3 and I[2] = 1, thus leading to another
representation of the same set of clusters. To avoid this symmetry, the following constraints are
added:

– Representatives are sorted in increasing order: ∀c < c′ ∈ [1, k], I[c] < I[c′].
– The representative of the first cluster is the first point: I[1] = 1.

Modeling different objective criteria When minimizing the maximal diameter:

– Two points at a distance greater than the maximal diameter must be in different clusters:
∀i < j ∈ [1, n], d(i, j) > D → (G[i] 6= G[j]).

– The maximal diameter is minimized: minimize D.

When maximizing the minimal margin between clusters:

– Two points at a distance less than the minimal margin must be in the same cluster: ∀i < j ∈
[1, n], d(i, j) < S → G[i] = G[j].

– The minimal margin is maximized: maximize S.

When minimizing the Within-Cluster Sum of Dissimilarities (WCSD):

– V =
∑

i,j∈[1,n](G[i] == G[j])d(i, j)2.
– The sum value is minimized: minimize V .

Modeling user-defined constraints All popular user-defined constraints may be straightforwardly
integrated:

– Minimal size α of clusters: ∀c ∈ [1, k],#{i | G[i]=I[c]} ≥ α.
– Maximal size β of clusters: ∀c ∈ [1, k],#{i | G[i]=I[c]} ≤ β.
– A δ-constraint expresses that the margin between two clusters must be at least δ. Therefore,

for each i < j ∈ [1, n] satisfying d(i, j) < δ, we put the constraint: G[i] = G[j].
– A diameter constraint expresses that the diameter of each cluster must be at most γ, therefore

for each i < j ∈ [1, n] such that d(i, j) > γ, we put the constraint: G[i] 6= G[j].



– A density constraint that we have introduced expresses that each point must have in its
neighborhood of radius ε, at least MinPts points belonging to the same cluster as itself. So,
for each i ∈ [1, n], the set of points in its ε-neighborhood is computed and a constraint is put
on its cardinality:

#{j | d(i, j) ≤ ε,G[j]=G[i]} ≥MinPts.
– A must-link constraint on two points i and j is expressed by: G[i] = G[j].
– A cannot-link constraint on i and j is expressed by: G[i] 6= G[j].

Adding such constraints involves other constraints on D or S, as for instance G[i] = G[j] implies
D ≥ d(i, j) and G[i] 6= G[j] implies S ≤ d(i, j).

3.3 Search strategy

The variables I[c] (c ∈ [1, k]) are instantiated before the variables G[i] (i ∈ [1, n]). This means
that cluster representatives are first instantiated, allowing constraint propagation to assign some
points to clusters; when all the I[c] are instantiated, the variables G[i] whose domain is not a
singleton are instantiated. It is worth to notice that when all the variables I[c] are instantiated,
by the constraint (1) among the partitioning constraints, the remaining domains of G[i] contain
only the indices of the points which are representatives. For the details of search strategy and the
improvements of this model, we refer the reader to [15].

4 A new CP model for constrained clustering

In this section we present a new CP model for constrained clustering, where cluster representatives
are no longer used. This new model aims at finding a clustering which is composed of at least kmin

clusters and at most kmax clusters, where kmin and kmax are known parameters, which satisfies
all user-constraints and optimizes the specified criterion.

4.1 Variable choice

The new model makes use of integer valued variables G[1], . . . , G[n] whose domain is the set of
integers in [1, kmax]. These variables represent the assignment of points to clusters. An assignment
G[i] = c means that the point i is assigned to the cluster having the index c. The same name
for these variables is kept with respect to the previous model, since these variables have the same
meaning, but they do not have the same domain. The other variables D,S and V are the same
with respect to the previous model.

4.2 Constraints

We can see that in the previous model all the constraints except the partitioning constraints deal
only with the variables G[i]. These variables in the two models have the same meaning, they
represent the assignment of points to clusters. In the new model therefore only the constraints of
partitioning need to be reformulated. In this model, clusters are not identified by their represen-
tatives, but by their index (their number). A set of clusters could have different representations
by permutations on the cluster indices. In order to break symmetries, clusters will be numbered
such that a new number c is used for a new cluster if and only if all the other numbers c′ < c are
already used. The first cluster must contain the first point. If we need to put a point in another
cluster (the second), then the second cluster must have number 2. And if there are already 2 used
clusters and we need to put a point in a new cluster, the new cluster must have number 3, and so
on. Partitioning is expressed by the following constraints.

– The first point belongs to the first cluster:

G[1] = 1.



– There must be at most kmax clusters: this condition is straightforwardly satisfied, since the
domain of each variable G[i] is the set of integers in [1, kmax].

– There must be at least kmin clusters: that means, all the number from 1 to kmin must be used
for clusters. This means for all c ∈ [1, kmin], the value c must be taken at least once by the
variables G[1], . . . , G[n]. This is expressed by a “count” constraint: ∀c ∈ [1, kmin],

#{i | G[i] = c} ≥ 1.

In case the users need exactly k clusters, the parameters kmin = kmax = k, so any value
c ∈ [1, k] must appear at least once in the array G[1], . . . , G[n].

– A number c of cluster is used if and only if all the numbers c′ < c are already used: ∀i ∈ [1, n]

G[i] ≤ max
j∈[1,i−1]

(G[j]) + 1.

This constraint imposes that each point i must be either in a same cluster as another precedent
point, or in a new cluster of index c = c′+ 1, where c′ is the maximal index of clusters already
used.

4.3 Search strategy

Points are reordered previously in such a way that the first kmax points are more likely to be
in different clusters. We use FPF (Furthest Point First) heuristic [5] to reorder points. The first
picked point is the furthest point and all the other points have as a head this point. At each step,
the point which is the furthest from its head is picked, and the unpicked points which are closer
to this point than to their head change their head to this point. Steps are repeated until all points
are picked. The order of picking points is the order of points.

Branching is realized on the variables in the array G. The choice of the variables G depends on
the optimized criterion. For the WCSD criterion, the branching on uninstantiated variables in G
finds a variable G[i] and a value c in the domain of G[i] and makes two alternatives: G[i] = c and
G[i] 6= c. The variable G[i] is selected among those which have the smallest domain size. In this
model as in the previous model, a mixed strategy is used. Because an upper bound is necessary for
the constraint which computes the WCSD criterion, a greedy search is used first to find quickly
a solution. In this step, G[i] and c are selected to make sure that the value of V will increase
as little as possible. The solution found in general is quite good. After first solution, the search
strategy is changed to a “first-fail” search, which tends to cause the failure early. In this strategy,
the branching will try to make alternatives on frontier points, i.e. those that make most changes
on V .

For the maximal diameter criterion, the variable G[i] with the smallest remaining domain is
chosen first. When a variable G[i] is chosen, all values c in the domain of G[i] are examined
and we search for the ‘closest’ class c0 to point i. The distance between point i and a class c is
defined as the maximum distance between i to all points j such that G[j] has been instantiated
and G[j] = c. If a class c is empty (there does not exist any instantiated point G[j] such that
G[j] = c), the distance between i and this class is zero. The class c0 which is closest to the point i
is then determined based on these distances. The branching on G[i] makes then two alternatives
G[i] = c0 and G[i] 6= c0. With this strategy, the branching will assign point to empty group first
when possible. This strategy is different from the one used with the previous model, where the
branching depends on the distance between point i to each cluster representative.

5 Experiments

5.1 Datasets and methodology

The same 11 datasets as in [1] are used for experiments. They vary significantly in their size,
number of attributes and number of clusters. Nine datasets are from the UCI repository [16]: Iris,



Wine, Glass, Ionosphere, WDBC, Letter Recognition, Synthetic Control, Vehicle, Yeast. For the
dataset Letter Recognition, only 600 objects of 3 classes are considered from the 20.000 objects
in the original dataset, they are composed of the first 200 objects of each class. The data sets
GR431 and GR666 are obtained from the library TSPLIB [17]; they contain the coordinates of
431 and 666 European cities [18]. These two datasets do not contain the information about the
number of clusters k and we choose k = 3 for the tests. Table 1 summarizes informations about
these datasets.

Table 1: Properties of datasets used in the experiments

Dataset # Objects # Attributes # Clusters

Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
Ionosphere 351 34 2
GR431 431 2 not available
GR666 666 2 not available
WDBC 569 30 2
Letter Recognition 600 16 3
Synthetic Control 600 60 6
Vehicle 846 18 4
Yeast 1484 8 10

The two models are implemented with the Gecode library version 4.0.0. In this version released
in April 2013, float variables are supported. Experiments are all performed on a PC Intel core i5
with 3.8 GHz and 8 GB of RAM. Basic benchmarks on two models with the maximal diameter
criterion are studied.

5.2 Comparison of performances of two models

Table 2 shows the results for minimizing the maximal diameter criterion without user-constraint.
The first column gives the datasets, while the second column reports the optimal values of the
diameter. The third and fourth columns give the total CPU times (in seconds) for each model.
For the previous model, the number of classes is fixed, whereas in the new model, a lower bound
on the number of classes is used (kmin is set to 1). However, since there is no user-constraint, the
new model always finds the optimal solution with maximum number of classes allowed because
the more number of classes, the less so the better maximal diameter. Finally, both models find
the same optimal diameter and the same number of classes, but the solutions may be different as
there may exist several partitions with the same optimal diameter and both models find only one
(the first) partition with the optimal diameter.

The results show that, with new search strategy, the performance of new model is significantly
better. The reason is: with a better search strategy, the search space is smaller. Although new
search strategy requires more computations, the overall performance of the new model is better
in most of tests.

These are first experiments on the new model. More studies on the effectiveness of is model
with user-constraints and other criteria are planned for the near future.

5.3 Interest of this new model

The framework finds an optimal solution when there exists one, otherwise no solution is returned.
With the new model, users can find a clustering without specifying the exact number of clusters.
With the maximal diameter criterion and without user-constraints, in general, the solver always



Table 2: Comparison of two models with maximal diameter criterion

Dataset Optimal Diameter Previous Model New Model

Iris 2.58 0.03 0.03
Wine 458.13 0.3 0.06
Glass 4.97 0.9 0.4
Ionosphere 8.6 8.6 0.5
GR431 141.15 0.6 0.5
GR666 180 31.7 5.3
WDBC 2377.96 0.7 1
Letter Recognition 18.84 111.6 86.4
Synthetic Control 109.36 56.1 24.4
Vehicle 264.83 14.9 12.9
Yeast 0.67 2389.9 592.5

tries to find the best solution with a maximum number of clusters. However, with user-constraints,
the optimal solution may have less clusters.

Let us illustrate the interest of having the flexibility on the number of clusters with a dataset
similar to dataset used in [6]. In this dataset given in Figure 2, there are 4 groups of different shapes.
The maximal diameter criterion is chosen and the number of classes is between kmin = 1 and
kmax = 6. Without user-constraints, the model finds the optimal solution with 6 groups. However,
these groups do not reflect the real partition as the solver tends to rather find homogeneous
groups. Adding a min-margin constraint may help to improve the quality of the solution. With
the min-margin constraint with δ = 5% of the maximum distance between pairs of points, it is
not possible to get a solution with 5 or 6 groups. In this case, the solver found an optimal solution
with 4 groups. Let us notice that the previous model can find the same solution but user have to
set exactly k = 4. When the min-margin constraint is more strict (δ ≥ 10%), the solver finds the
optimal solution with only 2 or 3 groups. Solutions of different cases are expressed in table 3.

Fig. 2: Dataset

6 Conclusion

In this paper we present a model based on Constraint Programming to address Constrained
Clustering tasks. This model has the ability to handle an optimization criterion and different
kinds of user-constraints. Moreover, it allows the users not to fix an exact number of clusters, but
only to define an upper and a lower bound on the desired number of clusters. With the diameter-
based criterion, first experiments show that the model has a better performance. This could be a
result by this simpler model and by a more appropriated search strategy. We plan to study search
strategies in order to improve better the efficiency of our models.



Table 3: Optimal solution with constraint of separation

No user-constraint δ = 5% max Distance

δ = 10% max Distance δ = 13% max Distance



References

1. Dao, T.B.H., Duong, K.C., Vrain, C.: A declarative framework for constrained clustering. In: European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
ECML/PKDD. (2013)

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining. In: Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2008)
204–212

3. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Data Mining and Machine Learning.
In: Proc. of the 24th AAAI Conference on Artificial Intelligence. (2010)

4. Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S., Métivier, J.P.: Discovering Knowledge using
a Constraint-based Language. CoRR abs/1107.3407 (2011)

5. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoretical Computer
Science 38 (1985) 293–306

6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In: Second International Conference on Knowledge Discovery
and Data Mining. (1996) 226–231

7. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings of the Seventeenth
International Conference on Machine Learning. (2000) 1103–1110

8. Davidson, I., Ravi, S.S.: Clustering with Constraints: Feasibility Issues and the k-Means Algorithm.
In: Proc. 5th SIAM Data Mining Conference. (2005)

9. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering with background
knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning. (2001)
577–584

10. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning in semi-supervised
clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning. (2004)
11–18

11. Davidson, I., Ravi, S.S.: Agglomerative hierarchical clustering with constraints: Theoretical and empir-
ical results. Proceedings of the 9th European Conf. on Principles and Practice of Knowledge Discovery
in Databases (2005) 59–70

12. Lu, Z., Carreira-Perpinan, M.A.: Constrained spectral clustering through affinity propagation. In:
2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE (June 2008) 1–8

13. Wang, X., Davidson, I.: Flexible constrained spectral clustering. In: KDD ’10: Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2010) 563–572

14. Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming. Foundations of
Artificial Intelligence. Elsevier B.V., Amsterdam, Netherlands (August 2006)

15. Dao, T.B.H., Duong, K.C., Vrain, C.: Constraint programming for constrained clustering. Technical
Report 03, LIFO, Université d’Orléans (2013)
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