

4 rue Léonard de Vinci
BP 6759
F-45067 Orléans Cedex 2
FRANCE
http://www.univ-orleans.fr/lifo

Rapport de Recherche

Towards more Precise Rewriting Approximations
 (full version)

Yohan Boichut, Jacques Chabin and Pierre Réty
LIFO, Université d'Orléans

Rapport n^{0} RR-2014-02

Towards more Precise Rewriting Approximations

Yohan Boichut, Jacques Chabin and Pierre Réty
LIFO - Université d'Orléans, B.P. 6759, 45067 Orléans cedex 2, France
\{yohan.boichut, jacques.chabin, pierre.rety\}@univ-orleans.fr

Abstract

To check a system, some verification techniques consider a set of terms I that represents the initial configurations of the system, and a rewrite system R that represents the system behavior. To check that no undesirable configuration is reached, they compute an overapproximation of the set of descendants (successors) issued from I by R, expressed by a tree language. Their success highly depends on the quality of the approximation. Some techniques have been presented using regular tree languages, and more recently using non-regular languages to get better approximations: using context-free tree languages [15] on the one hand, using synchronized tree languages [2] on the other hand. In this paper, we merge these two approaches to get even better approximations: we compute an over-approximation of the descendants, using synchronized-context-free tree languages expressed by logic programs. We give several examples for which our procedure computes the descendants in an exact way, whereas the former techniques compute a strict over-approximation.

Keywords: term rewriting, tree languages, logic programming, reachability.

1 Introduction

To check systems like cryptographic protocols or Java programs, some verification techniques consider a set of terms I that represents the initial configurations of the system, and a rewrite system R that represents the system behavior [1, $12,13]$. To check that no undesirable configuration is reached, they compute an over-approximation of the set of descendants ${ }^{1}$ (successors) issued from I by R, expressed by a tree language. Let $R^{*}(I)$ denote the set of descendants of I, and consider a set Bad of undesirable terms. Thus, if a term of Bad is reached from I, i.e. $R^{*}(I) \cap B a d \neq \emptyset$, it means that the protocol or the program is flawed. In general, it is not possible to compute $R^{*}(I)$ exactly. Instead, one computes an over-approximation $A p p$ of $R^{*}(I)$ (i.e. $A p p \supseteq R^{*}(I)$), and checks that $A p p \cap B a d=\emptyset$, which ensures that the protocol or the program is correct.

However, I, Bad and App have often been considered as regular tree languages, recognized by finite tree automata. In the general case, $R^{*}(I)$ is not

[^0]regular, even if I is. Moreover, the expressiveness of regular languages is poor. Then the over-approximation $A p p$ may not be precise enough, and we may have $A p p \cap B a d \neq \emptyset$ whereas $R^{*}(I) \cap B a d=\emptyset$. In other words, the protocol is correct, but we cannot prove it. Some work has proposed CEGAR-techniques (CounterExample Guided Approximation Refinement) to conclude as often as possible $[1,3,5]$. However, in some cases, no regular over-approximation works [4].

To overcome this theoretical limit, the idea is to use more expressive languages to express the over-approximation, i.e. non-regular ones. However, to be able to check that $A p p \cap B a d=\emptyset$, we need a class of languages closed under intersection and whose emptiness is decidable. Actually, if we assume that Bad is regular, closure under intersection with a regular language is enough. The class of context-free tree languages has these properties, and an approximation technique using context-free tree languages has been proposed in [15]. On the other hand, the class of synchronized tree languages [16] also has these properties, and an approximation technique using synchronized tree languages has been proposed in [2]. Both classes include regular languages, but they are incomparable. Context-free tree languages cannot express dependencies between different branches, except in some cases, whereas synchronized tree languages cannot express vertical dependencies.

We want to use a more powerful class of languages that can express the two kinds of dependencies together: the class of synchronized-context-free tree(tuple) languages [20,21], which has the same properties as context-free languages and as synchronized languages, i.e. closure under union, closure under intersection with a regular language, decidability of membership and emptiness.

In this paper, we propose a procedure that always terminates and that computes an over-approximation of the descendants obtained by a linear rewrite system, using synchronized-context-free tree-(tuple) languages expressed by logic programs. Compared to our previous work [2], we introduce "input arguments" in predicates, which is a major technical change that highly improves the quality of the approximation, and that requires new results and new proofs. This work is a first step towards a verification technique offering more than regular approximations. Some on-going work is discussed in Section 5 in order to make this technique be an accepted verification technique.

The paper is organized as follows: classical notations and notions manipulated throughout the paper are introduced in Section 2. Our main contribution, i.e. computing approximations, is explained in Section 3. Finally, in Section 4 our technique is applied on examples, in particular when $R^{*}(I)$ can be expressed in an exact way neither by a context-free language, nor by a synchronized language. For lack of space, all proofs are in the appendix.

Related Work: The class of tree-tuples whose overlapping coding is recognized by a tree automaton on the product alphabet [6] (called "regular tree relations" by some authors), is strictly included in the class of rational tree relations [18].

The latter is equivalent to the class of non-copying ${ }^{2}$ synchronized languages [19], which is strictly included in the class of synchronized languages.

Context-free tree languages (i.e. without assuming a particular strategy for grammar derivations) [22] are equivalent to OI (outside-in strategy) context-free tree languages, but are incomparable with IO (inside-out strategy) context-free tree languages $[10,11]$. The IO class (and not the OI one) is strictly included in the class of synchronized-context-free tree languages. The latter is equivalent to the "term languages of hyperedge replacement grammars", which are equivalent to the tree languages definable by attribute grammars [8, 9]. However, we prefer to use the synchronized-context-free tree languages, which use the well known formalism of pure logic programming, for its implementation ease.

Much other work computes the descendants in an exact way using regular tree languages (in particular the recent paper [7]). In general the set of descendants is not regular even if the initial set is. Consequently strong restrictions over the rewrite system are needed to get regular descendants, which are not suitable in the framework of protocol or program verification.

2 Preliminaries

Consider a finite ranked alphabet Σ and a set of variables Var. Each symbol $f \in \Sigma$ has a unique arity, denoted by $\operatorname{ar}(f)$. The notions of first-order term, position and substitution are defined as usual. Given σ and σ^{\prime} two substitutions, $\sigma \circ \sigma^{\prime}$ denotes the substitution such that for any variable $x, \sigma \circ \sigma^{\prime}(x)=\sigma\left(\sigma^{\prime}(x)\right)$. T_{Σ} denotes the set of ground terms (without variables) over Σ. For a term t, $\operatorname{Var}(t)$ is the set of variables of $t, \operatorname{Pos}(t)$ is the set of positions of t. For $p \in \operatorname{Pos}(t)$, $t(p)$ is the symbol of $\Sigma \cup \operatorname{Var}$ occurring at position p in t, and $\left.t\right|_{p}$ is the subterm of t at position p. The term t is linear if each variable of t occurs only once in t. The term $t\left[t^{\prime}\right]_{p}$ is obtained from t by replacing the subterm at position p by $t^{\prime} . \operatorname{PosVar}(t)=\{p \in \operatorname{Pos}(t) \mid t(p) \in \operatorname{Var}\}, \operatorname{PosNonVar}(t)=\{p \in \operatorname{Pos}(t) \mid t(p) \notin$ $\operatorname{Var}\}$. Note that if $p \in \operatorname{PosNonVar}(t),\left.t\right|_{p}=f\left(t_{1}, \ldots, t_{n}\right)$, and $i \in\{1, \ldots, n\}$, then $p . i$ is the position of t_{i} in t. For $p, p^{\prime} \in \operatorname{Pos}(t), p<p^{\prime}$ means that p occurs in t strictly above p^{\prime}. Let t, t^{\prime} be terms, t is more general than t^{\prime} (denoted $t \leq t^{\prime}$) if there exists a substitution ρ s.t. $\rho(t)=t^{\prime}$. Let σ, σ^{\prime} be substitutions, σ is more general than $\sigma^{\prime}\left(\right.$ denoted $\left.\sigma \leq \sigma^{\prime}\right)$ if there exists a substitution ρ s.t. $\rho \circ \sigma=\sigma^{\prime}$.

A rewrite rule is an oriented pair of terms, written $l \rightarrow r$. We always assume that l is not a variable, and $\operatorname{Var}(r) \subseteq \operatorname{Var}(l)$. A rewrite system R is a finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite relation \rightarrow_{R} is defined as follows: $t \rightarrow_{R} t^{\prime}$ if there exist a position $p \in$ $\operatorname{Pos} N o n \operatorname{Var}(t)$, a rule $l \rightarrow r \in R$, and a substitution θ s.t. $\left.t\right|_{p}=\theta(l)$ and $t^{\prime}=$ $t[\theta(r)]_{p} . \rightarrow_{R}^{*}$ denotes the reflexive-transitive closure of $\rightarrow_{R} . t^{\prime}$ is a descendant of t if $t \rightarrow_{R}^{*} t^{\prime}$. If E is a set of ground terms, $R^{*}(E)$ denotes the set of descendants of elements of E. The rewrite rule $l \rightarrow r$ is left (resp. right) linear if l (resp. r) is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right) linear. R is linear if R is both left and right linear.

[^1]In the following, we consider the framework of pure logic programming, and the class of synchronized-context-free tree-tuple ${ }^{3}$ languages [20, 21], which is presented as an extension of the class of synchronized tree-tuple languages defined by CS-clauses $[16,17]$. Given a set Pred of predicate symbols; atoms, goals, bodies and Horn-clauses are defined as usual. Note that both goals and bodies are sequences of atoms. We will use letters G or B for sequences of atoms, and A for atoms. Given a goal $G=A_{1}, \ldots, A_{k}$ and positive integers i, j, we define $\left.G\right|_{i}=A_{i}$ and $\left.G\right|_{i . j}=\left.\left(A_{i}\right)\right|_{j}=t_{j}$ where $A_{i}=P\left(t_{1}, \ldots, t_{n}\right)$.

Definition 1. The tuple of terms $\left(t_{1}, \ldots, t_{n}\right)$ is flat if t_{1}, \ldots, t_{n} are variables. The sequence of atoms B is flat if for each atom $P\left(t_{1}, \ldots, t_{n}\right)$ of B, t_{1}, \ldots, t_{n} are variables. B is linear if each variable occurring in B (possibly at sub-term position) occurs only once in B. Note that the empty sequence of atoms (denoted by $\emptyset)$ is flat and linear.
A Horn clause $P\left(t_{1}, \ldots, t_{n}\right) \leftarrow B$ is:

- empty if $P\left(t_{1}, \ldots, t_{n}\right)$ is flat, i.e. $\forall i \in\{1, \ldots, n\}, t_{i}$ is a variable.
- normalized if $\forall i \in\{1, \ldots, n\}, t_{i}$ is a variable or contains only one occurrence of function-symbol. A program is normalized if all its clauses are normalized.
Example 1. Let x, y, z be variables. The sequence of atoms $P_{1}(x, y), P_{2}(z)$ is flat, whereas $P_{1}(x, f(y)), P_{2}(z)$ is not flat. The clause $P(x, y) \leftarrow Q(x, y)$ is empty and normalized (x, y are variables). The clause $P(f(x), y) \leftarrow Q(x, y)$ is normalized whereas $P(f(f(x)), y) \leftarrow Q(x, y)$ is not.

Definition 2. A logic program with modes is a logic program such that a modetuple $\vec{m} \in\{I, O\}^{n}$ is associated to each predicate symbol $P(n$ is the arity of $P)$. In other words, each predicate argument has mode I (Input) or O (Output). To distinguish them, output arguments will be covered by a hat.
Notation: Let P be a predicate symbol. $\operatorname{Ar} \operatorname{In}(P)$ is the number of input arguments of P, and $\operatorname{ArOut}(P)$ is the number of output arguments. Let B be a sequence of atoms (possibly containing only one atom). $\operatorname{In}(B)$ is the input part of B, i.e. the tuple composed of the input arguments of $B \operatorname{ArIn}(B)$ is the arity of $\operatorname{In}(B) . \operatorname{Var}^{i n}(B)$ is the set of variables that appear in $\operatorname{In}(B)$. Out $(B), \operatorname{ArOut}(B)$, and $\operatorname{Var}^{\text {out }}(B)$ are defined in a similar way. We also define $\operatorname{Var}(B)=\operatorname{Var}^{i n}(B) \cup \operatorname{Var}^{o u t}(B)$.

Example 2. Let $B=P\left(\widehat{t_{1}}, \widehat{t_{2}}, t_{3}\right), Q\left(\widehat{t_{4}}, t_{5}, t_{6}\right)$. Then, $O u t(B)=\left(t_{1}, t_{2}, t_{4}\right)$ and $\operatorname{In}(B)=\left(t_{3}, t_{5}, t_{6}\right)$.

Definition 3. Let $B=A_{1}, \ldots, A_{n}$ be a sequence of atoms. We say that $A_{j} \succ$ A_{k} (possibly $j=k$) if $\exists y \in \operatorname{Var}^{i n}\left(A_{j}\right) \cap \operatorname{Var}^{o u t}\left(A_{k}\right)$. In other words an input of A_{j} depends on an output of A_{k}. We say that B has a loop if $A_{j} \succ^{+} A_{j}$ for some $A_{j}\left(\succ^{+}\right.$is the transitive closure of $\left.\succ\right)$.

Example 3. $Q(\widehat{x}, s(y)), R(\widehat{y}, s(x))$ (where x, y are variables) has a loop because $Q(\widehat{x}, s(y)) \succ R(\widehat{y}, s(x)) \succ Q(\widehat{x}, s(y))$.

[^2]Definition 4. A Synchronized-Context-Free ($S-C F$) program Prog is a logic program with modes, whose clauses $H \leftarrow B$ satisfy:

- $\operatorname{In}(H) \cdot \operatorname{Out}(B)$ (. is the tuple concatenation) is a linear tuple of variables, i.e. each tuple-component is a variable, and each variable occurs only once,
- and B does not have a loop.

A clause of an S-CF program is called $S-C F$ clause.
Example 4. Prog $=\{P(\widehat{x}, y) \leftarrow P(\widehat{s(x)}, y)\}$ is not an S-CF program because $\operatorname{In}(H) \cdot \operatorname{Out}(B)=(y, s(x))$ is not a tuple of variables. $\operatorname{Prog}^{\prime}=\left\{P^{\prime}(\widehat{s(x)}, y) \leftarrow\right.$ $\left.P^{\prime}(\widehat{x}, s(y))\right\}$ is an S-CF program because $\operatorname{In}(H) \cdot \operatorname{Out}(B)=(y, x)$ is a linear tuple of variables, and there is no loop in the clause body.

Definition 5. Let Prog be an S-CF program. Given a predicate symbol P without input arguments, the tree-(tuple) language generated by P is $L_{\text {Prog }}(P)=$ $\left\{\vec{t} \in\left(T_{\Sigma}\right)^{\operatorname{ArOut}(P)} \mid P(\vec{t}) \in \operatorname{Mod}(\operatorname{Prog})\right\}$, where T_{Σ} is the set of ground terms over the signature Σ and $\operatorname{Mod}(\operatorname{Prog})$ is the least Herbrand model of Prog. $L_{\text {Prog }}(P)$ is called Synchronized-Context-Free language (S-CF language).

Example 5. Let us consider the S-CF program without input arguments Prog= $\left.\left\{P_{1}(\widehat{g(x, y)}) \leftarrow P_{2}(\widehat{x}, \widehat{y}) . P_{2}(\widehat{a}, \widehat{a}) \leftarrow . P_{2}\left(\widehat{c(x, y)}, c \widehat{\left(x^{\prime}, y^{\prime}\right.}\right)\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y^{\prime}}\right), P_{2}\left(\widehat{y}, \widehat{x^{\prime}}\right).\right\}$. The language generated by P_{1} is $L_{\text {Prog }}\left(P_{1}\right)=\left\{g\left(t, t_{\text {sym }}\right) \mid t \in T_{\left\{c{ }^{2}, a \backslash 0\right\}}\right\}$, where $t_{\text {sym }}$ is the symmetric tree of t (for instance $c(c(a, a), a)$ is the symmetric of $c(a, c(a, a)))$. This language is synchronized, but it is not context-free.

Example 6. Prog $=\{S(\widehat{c(x, y)}) \leftarrow P(\widehat{x}, \widehat{y}, a, b)$.
$\left.P\left(\widehat{f(x)}, \widehat{g(y)}, x^{\prime}, y^{\prime}\right) \leftarrow P\left(\widehat{x}, \widehat{y}, h\left(x^{\prime}\right), i\left(y^{\prime}\right)\right) . P(\widehat{x}, \widehat{y}, x, y) \leftarrow\right\}$ is an S-CF program. The language generated by S is $L_{\text {Prog }}(S)=\left\{c\left(f^{n}\left(h^{n}(a)\right), g^{n}\left(i^{n}(b)\right)\right) \mid n \in \mathbb{N}\right\}$, which is not synchronized (there are vertical dependencies) nor context-free.

Definition 6. The S-CF clause $H \leftarrow B$ is non-copying if the tuple $O u t(H) \cdot \operatorname{In}(B)$ is linear. A program is non-copying if all its clauses are non-copying.

Example 7. The clause $P(\widehat{d(x, x)}, y) \leftarrow Q(\widehat{x}, p(y))$ is copying whereas $P(\widehat{c(x)}, y) \leftarrow$ $Q(\widehat{x}, p(y))$ is non-copying.

Remark 1. An S-CF program without input arguments is actually a CS-program (composed of CS-clauses) [16], which generates a synchronized language ${ }^{4}$. A noncopying CS-program such that every predicate symbol has only one argument generates a regular tree language ${ }^{5}$. Conversely, every regular tree language can be generated by a non-copying CS-program.

Given an S-CF program, we focus on two kinds of derivations.
Definition 7. Given an $S-C F$ program Prog and a sequence of atoms G,

[^3]- G derives into G^{\prime} by a resolution step if there exists a clause ${ }^{6} H \leftarrow B$ in Prog and an atom $A \in G$ such that A and H are unifiable by the most general unifier σ (then $\sigma(A)=\sigma(H))$ and $G^{\prime}=\sigma(G)[\sigma(A) \leftarrow \sigma(B)]$. It is written $G \sim_{\sigma} G^{\prime}$.
We consider the transitive closure \neg^{+}and the reflexive-transitive closure \sim^{*} of \leadsto. If $G_{1} \sim_{\sigma_{1}} G_{2}$ and $G_{2} \sim_{\sigma_{2}} G_{3}$, we write $G_{1} \sim_{\sigma_{2} \circ \sigma_{1}}^{*} G_{3}$.
- G rewrites into G^{\prime} (possibly in several steps) if $G \sim_{\sigma}^{*} G^{\prime}$ s.t. σ does not instantiate the variables of G. It is written $G \rightarrow_{\sigma}^{*} G^{\prime}$.

Example 8. Let Prog $=\left\{P\left(\widehat{x_{1}}, \widehat{g\left(x_{2}\right)}\right)\right) \leftarrow P^{\prime}\left(\widehat{x_{1}}, \widehat{x_{2}}\right) . \quad P\left(\widehat{f\left(x_{1}\right)}, \widehat{x_{2}}\right) \leftarrow P^{\prime \prime}\left(\widehat{x_{1}}\right.$, $\left.\left.\widehat{x_{2}}\right).\right\}$, and consider $G=P(f(x), y)$. Thus, $\left.P(f(x), y)\right) \sim \sigma_{\sigma_{1}} P^{\prime}\left(f(x), x_{2}\right)$ with $\sigma_{1}=\left[x_{1} / f(x), y / g\left(x_{2}\right)\right]$ and $\left.P(f(x), y)\right) \rightarrow_{\sigma_{2}} P^{\prime \prime}(x, y)$ with $\sigma_{2}=\left[x_{1} / x, x_{2} / y\right]$.

In the remainder of the paper, given an S-CF program Prog and two sequences of atoms G_{1} and $G_{2}, G_{1} \sim_{\text {Prog }}^{*} G_{2}$ (resp. $G_{1} \rightarrow_{\text {Prog }}^{*} G_{2}$) also denotes that G_{2} can be derived (resp. rewritten) from G_{1} using clauses of Prog. Note that for any atom A, if $A \rightarrow B$ then $A \leadsto B$. On the other hand, $A \sim_{\sigma} B$ implies $\sigma(A) \rightarrow B$. Consequently, if A is ground, $A \leadsto B$ implies $A \rightarrow B$.

It is well known that resolution is complete.
Theorem 1. Let A be a ground atom. $A \in \operatorname{Mod}($ Prog $)$ iff $A \sim_{\text {Prog }}^{*} \emptyset$.

3 Computing Descendants

To make the understanding easier, we first give the completion algorithm in Definition 8. Given a normalized S-CF program Prog and a linear rewrite system R, we propose an algorithm to compute a normalized S-CF program Prog' such that $R^{*}(\operatorname{Mod}(\operatorname{Prog})) \subseteq \operatorname{Mod}\left(\operatorname{Prog}^{\prime}\right)$, and consequently $R^{*}\left(L_{\text {Prog }}(P)\right) \subseteq L_{\operatorname{Prog}}(P)$ for each predicate symbol P. Some notions will be explained later.

Definition 8 (comp). Let arity-limit and predicate-limit be positive integers. Let R be a linear rewrite system, and Prog be a finite, normalized and non-copying S-CF program strongly coherent with R. The completion process is defined by: Function comp_{R} (Prog)

Prog $=$ removeCycles(Prog)
while there exists a non-convergent critical pair $H \leftarrow B$ in Prog do
Prog $=\operatorname{removeCycles}\left(\operatorname{Prog} \cup\right.$ norm $\left._{\operatorname{Prog}}(H \leftarrow B)\right)$
end while
return Prog
Let us explain this algorithm.
The notion of critical pair is at the heart of the technique. Given an S-CF program Prog, a predicate symbol P and a rewrite rule $l \rightarrow r$, a critical pair, explained in details in Section 3.1, is a way to detect a possible rewriting by $l \rightarrow r$ for a term t in $L(P)$. A convergent critical pair means that the rewrite step is

[^4]already handled i.e. if $t \rightarrow_{l \rightarrow r} s$ then $s \in L(P)$. Consequently, the language of a normalized CS-program involving only convergent critical pairs is closed by rewriting.

To summarize, a non-convergent critical pair gives rise to an S-CF clause. Adding the resulting S-CF clause to the current S-CF program makes the critical pair convergent. But, let us emphasize on the main problems arising from Definition 8 , i.e. the computation may not terminate and the resulting S-CF clause may not be normalized. Concerning the non-termination, there are mainly two reasons. Given a normalized S-CF program Prog, 1) the number of critical pairs may be infinite and 2) even if the number of critical pairs is finite, adding the critical pairs to Prog may create new non-convergent critical pairs, and so on.

Actually, as in [2], there is a function called removeCycles whose goal is to get finitely many critical pairs from a given finite S-CF program. For lack of space, many details on this function are given in Appendix E. Basically, given an S-CF program Prog having infinitely many critical pairs, removeCycles(Prog) is another S-CF program that has finitely many critical pairs, and such that for any predicate symbol $P, L_{\text {Prog }}(P) \subseteq L_{\text {removeCycles }(\text { Prog })}(P)$. The normalization process presented in Section 3.2 not only preserves the normalized nature of the computed S-CF programs but also allows us to control the creation of new nonconvergent critical pairs. Finally, in Section 3.3, our main contribution, i.e. the computation of an over-approximating S-CF program, is fully described.

3.1 Critical pairs

The notion of critical pair is the heart of our technique. Indeed, it allows us to add S-CF clauses into the current S-CF program in order to cover rewriting steps.

Definition 9. Let Prog be a non-copying S-CF program and $l \rightarrow r$ be a leftlinear rewrite rule. Let x_{1}, \ldots, x_{n} be distinct variables such that $\left\{x_{1}, \ldots, x_{n}\right\} \cap$ $\operatorname{Var}(l)=\emptyset$. If there are P and k s.t. the $k^{\text {th }}$ argument of P is an output, and $P\left(x_{1}, \ldots, x_{k-1}, l, x_{k+1}, \ldots, x_{n}\right) \sim_{\theta}^{+} G$ where ${ }^{7}$

1. resolution steps are applied only on atoms whose output is not flat,
2. Out (G) is flat and
3. the clause $P\left(t_{1}, \ldots, t_{n}\right) \leftarrow B$ used in the first step of this derivation satisfies t_{k} is not a variable ${ }^{8}$
then the clause $\theta\left(P\left(x_{1}, \ldots, x_{k-1}, r, x_{k+1}, \ldots, x_{n}\right)\right) \leftarrow G$ is called critical pair. Moreover, if θ does not instantiate the variables of $\operatorname{In}\left(P\left(x_{1}, \ldots, x_{k-1}, l, x_{k+1}, \ldots\right.\right.$, $\left.x_{n}\right)$) then the critical pair is said strict.
[^5]Example 9. Let Prog be the S-CF program defined by:
$\operatorname{Prog}=\{P(\widehat{x}) \leftarrow Q(\widehat{x}, a) . \quad Q(\widehat{f(x)}, y) \leftarrow Q(\widehat{x}, g(y)) . \quad Q(\widehat{x}, x) \leftarrow$.$\} and consider$ the rewrite system: $R=\{f(x) \rightarrow x\}$. Note that $L(P)=\left\{f^{n}\left(g^{n}(a)\right) \mid n \in \mathbb{N}\right\}$.
We have $Q(\widehat{f(x)}, y) \sim_{I d} Q(\widehat{x}, g(y))$ where $I d$ denotes the substitution that leaves every variable unchanged. Since $\operatorname{Out}(Q(\widehat{x}, g(y)))$ is flat, this generates the strict critical pair $Q(\widehat{x}, y) \leftarrow Q(\widehat{x}, g(y))$.

Lemma 1. A strict critical pair is an S-CF clause. In addition, if $l \rightarrow r$ is right-linear, a strict critical pair is a non-copying S-CF clause.

Definition 10. A critical pair $H \leftarrow B$ is said convergent if $H \rightarrow_{\text {Prog }}^{*} B$.
The critical pair of Example 9 is not convergent.
Let us recall that the completion procedure is based on adding the nonconvergent critical pairs into the program. In order to preserve the nature of the S-CF program, the computed non-convergent critical pairs are expected to be strict. So we define a sufficient condition on R and Prog called strong coherence.

Definition 11. Let R be a rewrite system. We consider the smallest set of consuming symbols, recursively defined by: $f \in \Sigma$ is consuming if there exists a rewrite rule $f\left(t_{1}, \ldots, t_{n}\right) \rightarrow r$ in R s.t. some t_{i} is not a variable, or r contains at least one consuming symbol.
The S-CF program Prog is strongly coherent with R if 1) for all $l \rightarrow r \in R$, the top-symbol of l does not occur in input arguments of Prog and 2) no consuming symbol occurs in clause-heads having input arguments.

In $R=\{f(x) \rightarrow g(x), g(s(x)) \rightarrow h(x)\}, g$ is consuming and so is f. Thus $\operatorname{Prog}=\{P(\widehat{f(x)}, x) \leftarrow$.$\} is not strongly coherent with R$. Note that a CS-program (no input arguments) is strongly coherent with any rewrite system.

Lemma 2. If Prog is a normalized S-CF program strongly coherent with R, then every critical pair is strict.

So, we come to our main result that ensures to get the rewriting closure when every computable critical pair is convergent.

Theorem 2. Let R be a linear rewrite system, and Prog be a non-copying normalized S-CF program strongly coherent with R. If all strict critical pairs are convergent, then for every predicate symbol P without input arguments, $L(P)$ is closed under rewriting by R, i.e. $\left(\vec{t} \in L(P) \wedge \vec{t} \rightarrow_{R}^{*} \overrightarrow{t^{\prime}}\right) \Longrightarrow \overrightarrow{t^{\prime}} \in L(P)$.

3.2 Normalizing critical pairs - norm ${ }_{\text {Prog }}$

If a critical pair is not convergent, we add it into Prog, and the critical pair becomes convergent. However, in the general case, a critical pair is not normalized, whereas all clauses in Prog should be normalized. In the case of CS-clauses (i.e. without input arguments), a procedure that transforms a non-normalized clause
into normalized ones has been presented [2]. For example, $P(\widehat{f(g(x)}), \widehat{b}) \leftarrow Q(\widehat{x})$ is normalized into $\left\{P\left(\widehat{f\left(x_{1}\right)}, \widehat{b}\right) \leftarrow P_{1}\left(\widehat{x_{1}}\right) . \quad P_{1}\left(\widehat{g\left(x_{1}\right)}\right) \leftarrow Q\left(\widehat{x_{1}}\right).\right\} \quad\left(P_{1}\right.$ is a new predicate symbol). Since only output arguments should be normalized, this procedure still works even if there are also input arguments. As new predicate symbols are introduced, possibly with bigger arities, the procedure may not terminate. To make it terminate in every case, two positive integers are used: predicate-limit and arity-limit. If the number of predicate symbols having the same arity as P_{1} (including P_{1}) exceeds predicate-limit, an existing predicate symbol (for example Q) must be used instead of the new predicate P_{1}. This may enlarge $\operatorname{Mod}($ Prog $)$ in general and may lead to a strict over-approximation. If the arity of P_{1} exceeds arity-limit, P_{1} must be replaced in the clause body by several predicate symbols ${ }^{9}$ whose arities are less than or equal to arity-limit. This may also enlarge $\operatorname{Mod}(\operatorname{Prog})$. See [2] for more details.

In other words norm $\operatorname{Prog}(H \leftarrow B)$ builds a set of normalized S-CF clauses N such that $\operatorname{Mod}(\operatorname{Prog} \cup\{H \leftarrow B\}) \subseteq \operatorname{Mod}(\operatorname{Prog} \cup N)$.

However, when starting from a CS-program (i.e. without input arguments), it could be interesting to normalize by introducing input arguments, in order to profit from the bigger expressiveness of S-CF programs, and consequently to get a better approximation of the set of descendants, or even an exact computation, like in Examples 10 and 11 presented in Section 4. The quality of the approximation depends on the way the normalization is achieved. Some heuristics concerning the choice of functional symbols occurring as inputs will be developed in further work. Anyway, these heuristics will have to preserve the strong coherence property.

3.3 Completion

At the very beginning of Section 3, we have presented in Definition 8 the completion algorithm i.e. comp ${ }_{R}$. In Sections 3.1 and 3.2, we have described how to detect non-convergent critical pairs and how to convert them into normalized clauses using norm ${ }_{\text {Prog }}$.

Theorem 3 illustrates that our technique leads to a finite S-CF program whose language over-approximates the descendants obtained by a linear rewrite system R.

Theorem 3. Function comp always terminates, and all critical pairs are convergent in $\operatorname{comp}_{R}($ Prog $)$. Moreover, for each predicate symbol P without input arguments, $R^{*}\left(L_{\text {Prog }}(P)\right) \subseteq L_{\text {comp }_{R}(\text { Prog })}(P)$.

[^6]
4 Examples

In this section, our technique is applied on several examples. I is the initial set of terms and R is the rewrite system. Initially, we define an S-CF program Prog that generates I and that satisfies the assumptions of Definition 8. For lack of space, the examples should be as short as possible. To make the procedure terminate shortly, we suppose that predicate-limit $=1$, which means that for all i, there is at most one predicate symbol having i arguments, except for $i=1$ we allow two predicate symbols having one argument.

When the following example is dealt with synchronized languages, i.e. with CS-programs [2, Example 42], we get a strict over-approximation of the descendants. Now, thanks to the bigger expressive power of S-CF programs, we compute the descendants in an exact way.

Example 10. Let $I=\{f(a, a)\}$ and $R=\{f(x, y) \rightarrow u(f(v(x), w(y)))\}$. Intuitively, the exact set of descendants is $R^{*}(I)=\left\{u^{n}\left(f\left(v^{n}(a), w^{n}(a)\right)\right) \mid n \in \mathbb{N}\right\}$ where u^{n} means that u occurs n times. We define Prog $=\left\{P_{f}(\widehat{f(x, y)}) \leftarrow\right.$ $\left.P_{a}(\widehat{x}), P_{a}(\widehat{y}) ., P_{a}(\widehat{a}) \leftarrow.\right\}$. Note that $L_{P r o g}\left(P_{f}\right)=I$. The run of the completion is given in Fig 1. The reader can refer to Appendix G for a detailed explanation. In Fig 1, the left-most column reports the detected non-convergent critical pairs and the right-most column describes how they are normalized. Note that for the resulting program Prog, i.e. clauses appearing in the right-most column, $L_{\text {Prog }}\left(P_{f}\right)=R^{*}(I)$ indeed.

Detected non-convergent critical pairs	New clauses obtained by norm ${ }_{\text {Prog }}$
	Starting S-CF program
	$P_{f}(f(\widehat{x, y})) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})$.
	$P_{a}(\widehat{a}) \leftarrow$.
$P_{f}\left(u(f(v(\widehat{(x),} w(y)))) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})\right.$.	$P_{f}(\widehat{z}) \leftarrow P_{1}(\widehat{z}, x, y), P_{a}(\widehat{x}), P_{a}(\widehat{y})$.
	$P_{1}(\widehat{u(z)}, x, y) \leftarrow P_{1}(\widehat{z}, v(x), w(y))$.
	$P_{1}(f(x, y), x, y) \leftarrow$.
\emptyset	

Fig. 1. Run of comp_{R} on Example 10

The previous example could probably be dealt in an exact way using the technique of [15] as well, since $R^{*}(I)$ is a context-free language. It is not the case for the following example, whose language of descendants $R^{*}(I)$ is not contextfree (and not synchronized). It can be handled by S-CF programs in an exact way thanks to their bigger expressive power.

Example 11. Let $I=\left\{d_{1}(a, a, a)\right\}$ and

$$
R=\left\{\begin{array}{ll}
d_{1}(x, y, z) \xrightarrow{1} d_{1}(h(x), i(y), s(z)), & d_{1}(x, y, z) \xrightarrow{2} d_{2}(x, y, z) \\
d_{2}(x, y, s(z)) \xrightarrow{3} d_{2}(f(x), g(y), z), & d_{2}(x, y, a) \xrightarrow{4} c(x, y)
\end{array}\right\}
$$

$R^{*}(I)$ is composed of all terms appearing in the following derivation:
$d_{1}(a, a, a) \xrightarrow{1}^{n} d_{1}\left(h^{n}(a), i^{n}(a), s^{n}(a)\right) \xrightarrow{2} d_{2}\left(h^{n}(a), i^{n}(a), s^{n}(a)\right)$
$\xrightarrow{3}{ }^{k} d_{2}\left(f^{k}\left(h^{n}(a)\right), g^{k}\left(i^{n}(a)\right), s^{n-k}(a)\right) \xrightarrow{4} c\left(f^{n}\left(h^{n}(a)\right), g^{n}\left(i^{n}(a)\right)\right)$.
Note that the last rewrite step by rule 4 is possible only when $k=n$. The run of the completion on this example is given in Fig 2. Black arrows means that the non-convergent critical pair is directly added to Prog since it is already normalized. The reader can find a full explanation of this example in Appendix H.

Detected non-convergent critical pairs	New clauses obtained by norm Prog
	Starting S-CF program $\begin{aligned} & P_{d}\left(d_{1}(\widehat{x, y}, z)\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z}) . \\ & P_{a}(\widehat{a}) \leftarrow . \end{aligned}$
$P_{d}\left(d_{1}(h(x) \widehat{, i(y)}, s(z))\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$	$\begin{aligned} & P_{d}\left(d_{1}(\widehat{x, y}, z)\right) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z}) . \\ & P_{1}(\widehat{h(x)}, \widehat{i(y)}, \widehat{s(z)}) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z}) . \end{aligned}$
$P_{d}\left(d_{2}(\widehat{x, y}, z)\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$.	\rightarrow
$P_{d}\left(d_{1}(h(x) \widehat{, i(y)}, s(z))\right) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})$	$P_{1}(\widehat{h(x)}, \widehat{i(y)}, \widehat{s(z)}) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})$.
$P_{d}\left(d_{2}(\widehat{x, y}, z)\right) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z}) .$	\longrightarrow
$P_{d}(\widehat{c(x, y)}) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})$.	\longrightarrow
$P_{d}\left(d_{2}(f(h(x)) \widehat{, g}(i(y)), z)\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$	$\begin{aligned} & P_{d}\left(d_{2}(\widehat{x, y}, z)\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right), P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right), P_{a}\left(\widehat{z^{\prime}}\right) . \\ & P_{2}\left(\widehat{f(x)}, \widehat{g(y)}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z^{\prime}\right) \\ & P_{2}(\widehat{x}, \widehat{y}, \widehat{z}, x, y, z) \leftarrow . \end{aligned}$
A cycle is detected - removeCycles replaces the blue clause by the red one.	$\begin{aligned} P_{2}\left(\widehat{f(x)}, \widehat{g(y)}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right) \leftarrow & P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z_{1}}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z_{1}^{\prime}\right), \\ & P_{2}\left(\widehat{x_{1}}, \widehat{y_{1}}, \widehat{z}, h\left(x_{1}^{\prime}\right), i\left(y_{1}^{\prime}\right), z^{\prime}\right) \end{aligned}$
$P_{d}\left(d_{2}(f(h(x) \widehat{), g}(i(y)), z)) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})\right.$	$P_{d}\left(d_{2}(\widehat{x, y}, z)\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right), P_{1}\left(\widehat{x^{\prime}}, \widehat{y^{\prime}}, \widehat{z^{\prime}}\right)$.
$\begin{gathered} P_{d}\left(c(f(\widehat{x), g}(y))) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z^{\prime}\right),\right. \\ P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right) . \end{gathered}$	$\begin{aligned} & P_{3}(\widehat{f(x)}, \widehat{g(y)}) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z^{\prime}\right), P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right) . \\ & P_{d}(\widehat{c(x, y)}) \leftarrow P_{3}(\widehat{x}, \widehat{y}) . \end{aligned}$

Fig. 2. Run of comp_{R} on Example 11

Note that the subset of descendants $d_{2}\left(f^{k}\left(h^{n}(a)\right), g^{k}\left(i^{n}(a)\right), s^{n-k}(a)\right)$ can be seen (with $p=n-k$) as $d_{2}\left(f^{k}\left(h^{k+p}(a)\right), g^{k}\left(i^{k+p}(a)\right), s^{p}(a)\right)$. Let $\operatorname{Prog}^{\prime}$ be
the S-CF program composed of all the clauses except the blue one occurring in the right-most column in Fig 2. Thus, the reader can check by himself that $L_{\text {Prog' }}\left(P_{d}\right)$ is exactly $R^{*}(I)$.

5 Further Work

Computing approximations more precise than regular approximations is a first step towards a verification technique. However, there are at least two steps before claiming this technique as a verification technique: 1) automatically handling the choices done during the normalization process and 2) extending our technique to any rewrite system. The quality of the approximation is closely related to those choices. On one hand, it depends on the choice of the predicate symbol to be reused when predicate-limit is reached. On the other hand, the choice of generating function-symbols as output or as input is also crucial. According to the verification context, some automated heuristics will have to be designed in order to obtain well-customized approximations.

On-going work tends to show that the linear restriction concerning the rewrite system can be tackled. A non right-linear rewrite system makes the computed S-CF program copying. Consequently, Theorem 2 does not hold anymore. To get rid of the right-linearity restriction, we are studying the transformation of a copying S-CF clause into non-copying ones that will generate an over-approximation. On the other hand, to get rid of the left-linearity restriction, we are studying a technique based on the transformation of any Horn clause into CS-clauses [16]. However, the method of [16] does not always terminate. We want to ensure termination thanks to an additional over-approximation.

References

1. Y. Boichut, B. Boyer, Th. Genet, and A. Legay. Equational Abstraction Refinement for Certified Tree Regular Model Checking. In ICFEM, volume 7635 of LNCS, pages 299-315. Springer, 2012.
2. Y. Boichut, J. Chabin, and P. Réty. Over-approximating descendants by synchronized tree languages. In RTA, volume 21 of LIPIcs, pages 128-142, 2013.
3. Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is Better: Abstraction Refinement for Rewriting Approximations. In RTA, volume 5117 of LNCS, pages 48-62. Springer, 2008.
4. Y. Boichut and P.-C. Héam. A Theoretical Limit for Safety Verification Techniques with Regular Fix-point Computations. IPL, 108(1):1-2, 2008.
5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular (Tree) Model Checking. STTT, 14(2):167-191, 2012.
6. H. Comon, M. Dauchet, R. Gilleron, D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and Applications (TATA).
7. Irène Durand and Marc Sylvestre. Left-linear bounded trss are inverse recognizability preserving. In RTA, volume 10 of LIPIcs, pages 361-376, 2011.
8. J. Engelfriet and L. Heyker. Context-free Hypergraph Grammars have the same Term-generating Power as Attribute Grammars. Acta Informatica, 29, 1992.
9. J. Engelfriet and J.J. Vereijken. Context-free Grammars and Concatenation of Graphs. Acta Informatica, 34:773-803, 1997.
10. Joost Engelfriet and Erik Meineche Schmidt. IO and OI (I). Journal of Computer and System Sciences, 15(3):328-353, 1977.
11. Joost Engelfriet and Erik Meineche Schmidt. IO and OI (II). Journal of Computer and System Sciences, 16(1):67-99, 1978.
12. Th. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal Forms. In RTA, volume 1379 of $L N C S$, pages 151-165. Springer-Verlag, 1998.
13. Th. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In CADE, volume 1831 of LNAI, pages 271-290. Springer-Verlag, 2000.
14. V. Gouranton, P. Réty, and H. Seidl. Synchronized Tree Languages Revisited and New Applications. In FoSSaCS, volume 2030 of LNCS. Springer, 2001.
15. J. Kochems and C.-H. Luke Ong. Improved Functional Flow and Reachability Analyses Using Indexed Linear Tree Grammars. In RTA, volume 10 of LIPIcs, pages 187-202, 2011.
16. S. Limet and G. Salzer. Proving Properties of Term Rewrite Systems via Logic Programs. In RTA, volume 3091 of $L N C S$, pages 170-184. Springer, 2004.
17. S. Limet and G. Salzer. Tree Tuple Languages from the Logic Programming Point of View. Journal of Automated Reasoning, 37(4):323-349, 2006.
18. J.C. Raoult. Rational Tree Relations. Bulletin of the Belgian Mathematical Society Simon Stevin, 4:149-176, 1997.
19. P. Réty. Langages synchronisés d'arbres et applications. Habilitation Thesis (in French). LIFO, Université d'Orléans. Technical report, June 2001.
20. P. Réty, J. Chabin, and J. Chen. R-Unification thanks to Synchronized-Contextfree Tree Languages. In UNIF, 2005.
21. P. Réty, J. Chabin, and J. Chen. Synchronized ContextFree Tree-tuple Languages. Technical Report RR-2006-13, LIFO, 2006.
22. William C. Rounds. Context-free grammars on trees. In Patrick C. Fischer, Seymour Ginsburg, and Michael A. Harrison, editors, STOC. ACM, 1969.

Appendix

A Intermediary Technical Results

The following technical lemmas are necessary for proving Lemma 1.
Lemma 3. Let t and t^{\prime} be two terms such that $\operatorname{Var}(t) \cap \operatorname{Var}\left(t^{\prime}\right)=\emptyset$. Suppose that t^{\prime} is linear. Let σ be the most general unifier of t and t^{\prime}. Then, one has: $\forall x, y:(x, y \in \operatorname{Var}(t) \wedge x \neq y) \Rightarrow \operatorname{Var}(\sigma(x)) \cap \operatorname{Var}(\sigma(y))=\emptyset$ and $\forall x: x \in$ $\operatorname{Var}(t) \Rightarrow \sigma(x)$ is linear.

Proof. By Definition, $\sigma(t)=\sigma\left(t^{\prime}\right)$. Let us focus on t. Let p_{1}, \ldots, p_{n} be positions of variables occurring in t. For any p_{i},

- if $\left.\sigma(t)\right|_{p_{i}}$ is a variable then $\sigma\left(\left.t\right|_{p_{i}}\right)$ is linear;
- Suppose that $\left.\sigma(t)\right|_{p_{i}}$ is not a variable. Since σ is the most general unifier, there exists p_{j} such that $\sigma\left(\left.t\right|_{p_{i}}\right)=\left.t^{\prime}\right|_{p_{j}}$. In particular p_{j} may be different from p_{i} if the variable occurring at position p_{i} in t occurs more than once in t. The term t^{\prime} being linear, so is $\sigma\left(\left.t\right|_{p_{i}}\right)$.

For any p_{i}, p_{j} such that $\left.t\right|_{p_{i}} \neq\left. t\right|_{p_{j}}$, one has to study the different cases presented below:
$-\left.\sigma(t)\right|_{p_{i}}$ and $\left.\sigma(t)\right|_{p_{j}}$ are variables: Necessarily, $\left.\sigma(t)\right|_{p_{i}} \neq\left.\sigma(t)\right|_{p_{i}^{\prime}}$ because t^{\prime} is linear and $\left.t\right|_{p_{i}} \neq\left. t\right|_{p_{j}}$. Consequently, $\operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{i}}\right)\right) \cap \operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{i}}\right)\right)=\emptyset$.
$-\left.\sigma(t)\right|_{p_{i}}$ is a variable and $\left.\sigma(t)\right|_{p_{j}}$ is not: Consequently, there exists p_{k} such that $\left.\sigma(t)\right|_{p_{j}}=\left.t^{\prime}\right|_{p_{k}}$. Indeed, if the variable $\left.t\right|_{p_{j}}$ occurs only once in t then $p_{k}=p_{j}$. Otherwise, p_{k} is a position such that $\left.t\right|_{p_{j}}=\left.t\right|_{p_{k}}$. This position exists since the most general unifier exists.

- $\sigma\left(\left.t\right|_{p_{i}}\right) \in \operatorname{Var}(t):$ necessarily, $\operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{i}}\right)\right) \cap \operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{j}}\right)\right)=\emptyset$ since $\operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{j}}\right)\right)=\operatorname{Var}\left(\left.t^{\prime}\right|_{p_{k}}\right) \subseteq \operatorname{Var}\left(t^{\prime}\right)$ and by hypothesis $\operatorname{Var}(t) \cap \operatorname{Var}\left(t^{\prime}\right)=\emptyset$
- $\sigma\left(\left.t\right|_{p_{i}}\right) \in \operatorname{Var}\left(t^{\prime}\right)$: As for $\left.t\right|_{p_{j}}$, since σ is the most general unifier, there exists p_{l} a position of p_{1}, \ldots, p_{n} such that $\left.t\right|_{p_{l}}=\left.t\right|_{p_{i}}$ and $\sigma\left(\left.t\right|_{p_{i}}\right)=\left.t^{\prime}\right|_{p_{l}}$. Moreover, $\left.t\right|_{p_{i}} \neq\left. t\right|_{p_{j}}$. Thus, $p_{l} \neq p_{k}$. Since t^{\prime} is linear, $\operatorname{Var}\left(\left.t^{\prime}\right|_{p_{l}}\right) \cap$ $\operatorname{Var}\left(\left.t^{\prime}\right|_{p_{k}}\right)=\emptyset$. Finally, one has that $\operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{i}}\right)\right) \cap \operatorname{Var}\left(\sigma\left(\left.t\right|_{p_{j}}\right)\right)=\emptyset$.
$-\left.\sigma(t)\right|_{p_{j}}$ is a variable and $\left.\sigma(t)\right|_{p_{i}}$ is not: similar to the previous case.
$-\sigma\left(\left.t\right|_{p_{i}}\right)$ and $\sigma\left(\left.t\right|_{p_{j}}\right)$ are not variables: Once again, since σ is the mgu of t and t^{\prime}, there exists p_{k} and p_{l} such that $\left.t\right|_{p_{k}}=\left.t\right|_{p_{i}},\left.t\right|_{p_{l}}=\left.t\right|_{p_{j}}, p_{l} \neq p_{k}, \sigma\left(\left.t\right|_{p_{i}}\right)=\left.t^{\prime}\right|_{p_{k}}$ and $\sigma\left(\left.t\right|_{p_{j}}\right)=\left.t^{\prime}\right|_{p_{l}}$. The term t^{\prime} being linear, $\sigma\left(\left.t\right|_{p_{i}}\right) \cap \sigma\left(\left.t\right|_{p_{j}}\right)=\emptyset$.

Concluding the proof.
For the next lemmas, we introduce two notions allowing the extraction of variables occurring once in a sequence of atoms.

Definition 12. Let G be a sequence of atoms. $\operatorname{Var}_{\text {Lin }}^{i n}(G)$ is a tuple of variables occurring in $\operatorname{In}(G)$ and not in $\operatorname{Out}(G)$, and $\operatorname{Var}_{\text {Lin }}^{\text {out }}(G)$ is a tuple of variable occurring in $\operatorname{Out}(G)$ and not in $\operatorname{In}(G)$.

Example 12. Let G be a sequence of atoms s.t. $G=P\left(g\left(\widehat{f\left(x^{\prime}, z^{\prime}\right)}\right), y^{\prime}\right), Q\left(\widehat{v^{\prime}}\right.$, $\left.g\left(z^{\prime}\right)\right)$. Consequently, $\operatorname{Var}_{\text {Lin }}^{\text {in }}(G)=\left(y^{\prime}\right)$ and $\operatorname{Var}_{\text {Lin }}^{\text {out }}(G)=\left(x^{\prime}, v^{\prime}\right)$.

Note that for a matter of simplicity, we denote by $x \in \operatorname{Var}_{\operatorname{Lin}}^{i n}(G)$ (resp. $\left.x \in \operatorname{Var}_{\text {Lin }}^{\text {out }}(G)\right)$ that x occurs in the tuple $\operatorname{Var}_{\text {Lin }}^{\text {in }}(G)$ (resp. $\operatorname{Var}_{\text {Lin }}^{\text {out }}(G)$). The following lemma focuses on a property of a sequence of atoms obtained after a resolution step.

Lemma 4. Let Prog be a non-copying S-CF program, and G be a sequence of atoms such that $\operatorname{Out}(G)$ is linear, $\operatorname{In}(G)$ is linear and G does not contain loops. We assume ${ }^{10}$ that variables occurring in Prog are different from those occurring in G. If $G \sim_{\sigma} G^{\prime}$, then G^{\prime} is loop free, $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)$.Out $\left(G^{\prime}\right)$ and $\sigma\left(\operatorname{Var}_{\text {Lin }}^{\text {out }}(G)\right) \cdot I n\left(G^{\prime}\right)$ are both linear.

Example 13. Let $\operatorname{Prog}=\{P(\widehat{g(x)}, y) \leftarrow Q(\widehat{x}, f(y))\}$ and $\left.G=P\left(\widehat{g\left(f\left(x^{\prime}\right)\right.}\right), y^{\prime}\right)$. Then $G \sim_{\sigma} G^{\prime}$ with $\sigma=\left(x / f\left(x^{\prime}\right), y / y^{\prime}\right)$ and $G^{\prime}=Q\left(\widehat{f\left(x^{\prime}\right)}, f\left(y^{\prime}\right)\right)$. Note that $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right) . O u t\left(G^{\prime}\right)=\left(y^{\prime}, f\left(x^{\prime}\right)\right)$ is linear.

Proof. First, we show that $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)$. $\operatorname{Out}\left(G^{\prime}\right)$ and $\sigma\left(\operatorname{Var}_{\text {Lin }}^{o u t}(G)\right) \cdot \operatorname{In}\left(G^{\prime}\right)$ are linear. Thus, in a second time, we show that G^{\prime} is loop free.

Suppose that $G \sim_{\sigma} G^{\prime}$. Thus, there exist an atom A_{x} in $G=A_{1}, \ldots$, A_{x}, \ldots, A_{n}, a S-CF-clause $H \leftarrow B \in \operatorname{Prog}$ and the mgu σ such that $\sigma(H)=$ $\sigma\left(A_{x}\right)$ and $G^{\prime}=\sigma(G)\left[\sigma\left(A_{x}\right) \leftarrow \sigma(B)\right]$.

Let $\operatorname{Var}_{\operatorname{Lin}}^{i n}(G)=x_{1}, \ldots, x_{k}, \ldots, x_{k+n^{\prime}}, \ldots, x_{m}$ built as follows:
$-x_{1}, \ldots, x_{k-1}$ are the variables occurring in the atoms A_{1}, \ldots, A_{x-1};
$-x_{k}, \ldots, x_{k+n^{\prime}}$ are the variables occurring in A_{x};
$-x_{k+n^{\prime}+1}, \ldots, x_{m}$ are the variable occurring the atoms A_{x+1}, \ldots, A_{n}.
Since $\operatorname{In}(G)$ and $\operatorname{Out}(G)$ are both linear and σ is the mgu of A_{x} and H, one has $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)=x_{1}, \ldots, x_{k+1}, \sigma\left(x_{k}\right), \ldots, \sigma\left(x_{k+n^{\prime}}\right), x_{k+n^{\prime}+1}, \ldots x_{m}$. Note that the linearity of $\operatorname{In}(G)$ involves the linearity of $\operatorname{Var}_{\text {Lin }}^{i n}(G)$. Moreover, one can deduce that $\sigma\left(\operatorname{Var}_{L i n}^{i n}(G)\right)$ is linear iff the tuple $\sigma\left(x_{k}\right), \ldots, \sigma\left(x_{k+n^{\prime}}\right)$ is linear.

By hypothesis, $\operatorname{Out}(H) \cdot \operatorname{In}(B)$ and $\operatorname{Out}(B) \cdot \operatorname{In}(H)$ are both linear.
So, a variable occurring in $\operatorname{Var}(H) \cap \operatorname{Var}(B)$ is either

- a variable that is in $\operatorname{Out}(H)$ and $\operatorname{Out}(B)$ or
- a variable that is in $\operatorname{In}(H)$ and $\operatorname{In}(B)$.

A variable occurring in $\operatorname{Out}(H)$ and in $\operatorname{In}(H)$ does not occur in B. Symmetrically, a variable occurring in $\operatorname{Out}(B)$ and in $\operatorname{In}(B)$ does not occur in H. Moreover, a variable cannot occur twice in either $\operatorname{Out}(H)$ or $\operatorname{In}(H)$.

Let us focus on $A_{x} . A_{x}$ is linear since it does not contain loop by hypothesis. Let us study the possible forms of H given in Fig. 3.

Fig. 3. Possible forms of H

Each variable y occurring in B is:

- either a new variable or
- a variable occurring once in H and preserving its nature (input or output).

The relation $\sim_{P r o g}$ ensures the nature stability of variables i.e.

$$
\begin{align*}
& \operatorname{Var}(O u t(\sigma(B))) \cap \operatorname{Var}(\operatorname{In}(\sigma(H)))=\emptyset \text { and } \tag{1}\\
& \quad \operatorname{Var}(\operatorname{In}(\sigma(B))) \cap \operatorname{Var}(\operatorname{Out}(\sigma(H)))=\emptyset \tag{2}
\end{align*}
$$

Moreover, a consequence of Lemma 3 is that $\operatorname{Out}(\sigma(B))$ and $\operatorname{In}(\sigma(B))$ are both linear.

Let us study the two possible cases:
(a) since the variables of H and the variables of G are supposed to be disjointed and $\operatorname{Var}_{\text {Lin }}^{i n}(G)$ is linear, $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)=x_{1}, \ldots, x_{k+1}, \sigma\left(x_{k}\right), \ldots, \sigma\left(x_{k+n^{\prime}}\right)$, $x_{k+n^{\prime}+1}, \ldots, x_{m}$ is also linear. Moreover, considering H as linear and (1) and (2), a consequence is that

$$
\bigcup_{x_{i}, i \in\left\{k, \ldots, k+n^{\prime}\right\}} \operatorname{Var}\left(\sigma\left(x_{i}\right)\right) \subseteq\left\{x_{k}, \ldots, x_{k+n^{\prime}}\right\} \cup \operatorname{Var}^{i n}\left(A_{x}\right) .
$$

One can also deduce that $\operatorname{Var}^{\text {out }}\left(G^{\prime}\right) \subseteq \operatorname{Var}^{\text {out }}(G) \cup\left(\operatorname{Var}^{\text {out }}(B)\right)$. Consequently, $\operatorname{Var}^{\text {out }}\left(G^{\prime}\right) \cap \operatorname{Var}\left(\sigma\left(\operatorname{Var}_{L i n}^{i n}(G)\right)\right)=\emptyset$ and the tuple $\sigma\left(\operatorname{Var}_{L i n}^{i n}(G)\right) \cdot O u t\left(G^{\prime}\right)$ is linear iff $\operatorname{Out}\left(G^{\prime}\right)$ is linear.
(b) A variable can occur at most twice in H but an occurrence of such a variable is necessarily an input variable and the other an output variable. Consequently the unification between A_{x} and H leads to a variable α of $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)$ occurring twice in $\sigma(H)$. But according to the form of H, these two occurrences of α do not occur in $\sigma\left(\operatorname{Var}_{\operatorname{Lin}}^{i n}(G)\right)$ since one of the two occurrences is necessarily at an output position. So, once again, the tuple $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)=x_{1}, \ldots, x_{k+1}, \sigma\left(x_{k}\right), \ldots, \sigma\left(x_{k+n^{\prime}}\right), x_{k+n^{\prime}+1}, \ldots, x_{m}$ is linear. Moreover, Prog being a non-copying S-CF program, for any variable x_{i}, with $i=k, \ldots k+n^{\prime}$,

[^7]- if $x_{i} \in \operatorname{Var}(\sigma(x))$ with x a variable occurring twice in H then $\operatorname{Var}\left(\sigma\left(x_{i}\right)\right)$ $\cap \operatorname{Var}^{\text {out }}\left(G^{\prime}\right)=\emptyset ;$
- if there exists $z \in \operatorname{Var}^{\text {out }}\left(A_{x}\right)$ such that $z \in \operatorname{Var}\left(\sigma\left(x_{i}\right)\right)$ and $z \in$ $\operatorname{Var}(\sigma(x))$ with x a variable occurring twice in H then $\operatorname{Var}\left(\sigma\left(x_{i}\right)\right) \cap$ $\operatorname{Var}^{\text {out }}\left(G^{\prime}\right)=\emptyset$;
- if there exists $z \in \operatorname{Var}^{\text {out }}\left(A_{x}\right)$ such that $x_{i} \in \operatorname{Var}(\sigma(z))$ and $z \in$ $\operatorname{Var}(\sigma(x))$ with x a variable occurring twice in H then $\operatorname{Var}\left(\sigma\left(x_{i}\right)\right) \cap$ $\operatorname{Var}^{\text {out }}\left(G^{\prime}\right)=\emptyset$;
- if there exists $x \in \operatorname{Var}^{i n}(H)$ such that $x \notin \operatorname{Var}^{o u t}(H)$ then $\operatorname{Var}\left(\sigma\left(x_{i}\right)\right) \subseteq$ $\left\{x_{k}, \ldots, x_{k+n^{\prime}}\right\} \cup \operatorname{Var}^{i n}\left(A_{x}\right)$. Thus, $\operatorname{Var}\left(\sigma\left(x_{i}\right)\right) \cap \operatorname{Var}^{\text {out }}\left(G^{\prime}\right)=\emptyset$.
Consequently, $\sigma\left(\operatorname{Var}_{\text {Lin }}^{\text {in }}(G)\right) . \operatorname{Out}\left(G^{\prime}\right)$ is linear iff $\operatorname{Out}\left(G^{\prime}\right)$ is linear.
Let us now study the linearity of $\operatorname{Out}\left(G^{\prime}\right)$. First, let us focus on the case $\operatorname{Out}\left(\sigma\left(G-A_{x}\right)\right)$ where $G-A_{x}$ is the sequence of atoms G for which the atom A_{x} has been removed. Note that $\sigma\left(G-A_{x}\right)=G^{\prime}-\sigma(B)$.

Suppose that $\operatorname{Out}\left(G-A_{x}\right)$ is not linear. So there exist two distinct variables x and y of G such that $\operatorname{Var}(\sigma(x)) \cap \operatorname{Var}(\sigma(y))$. Since these variables are concerned by the mgu σ, they are also variables of A_{x} at input positions as illustrated in Fig. 4. Since these variables are distinct and share the same variable by the application of σ, then there exist two subterms (red and green triangles in Fig. 4) at input positions in H sharing the same variable α. That is impossible since, by definition, for each $H \leftarrow B \in \operatorname{Prog}$, one has $\operatorname{In}(H) \cdot \operatorname{Out}(B)$ and $\operatorname{Out}(H) \cdot \operatorname{In}(B)$ both linear.

Fig. 4. $G-A_{x}$

So, the last possible case for breaking the linearity of $\operatorname{Out}\left(G^{\prime}\right)$ is that there exist two distinct variables x and y such that x occurs in $\operatorname{Out}(B), y$ occurs in $\operatorname{Out}\left(G-A_{x}\right)$ and $\operatorname{Var}(\sigma(x)) \cap \operatorname{Var}(\sigma(y)) \neq \emptyset$. A variable α of $\operatorname{Var}(\sigma(x)) \cap$ $\operatorname{Var}(\sigma(y))$ is necessarily a variable of H. Since a copy of α is done in the variable y and y necessarily occurs in A_{x} at an input position, there is a contradiction.

Indeed, it means that the variable α must occur both in $O u t(H)$ and $\operatorname{In}(H)$ but also in $O u t(B)$. Thus, $H \leftarrow B$ is not a non-copying S-CF clause. Consequently, $\operatorname{Out}\left(G^{\prime}\right)$ is linear.

To conclude, $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right) . O u t\left(G^{\prime}\right)$ is linear. Note that showing that $\sigma($ $\left.\operatorname{Var}_{\text {Lin }}^{\text {out }}(G)\right) \cdot \operatorname{In}\left(G^{\prime}\right)$ is linear is very close.

The last remaining point to show is that G^{\prime} does not contain any loops. By construction, $G^{\prime}=\sigma(G)\left[\sigma\left(A_{x}\right) \leftarrow \sigma(B)\right]$. There are three cases to study:

- Suppose there exists a loop occurring in $G^{\prime}-\sigma(B)$: So, let us construct $G^{\prime}-$ $\sigma(B)$. By definition, $G^{\prime}-\sigma(B)=\sigma\left(A_{1}\right), \ldots \sigma\left(A_{x-1}\right), \sigma\left(A_{x+1}\right), \ldots \sigma\left(A_{m}\right)$. Let us reason on the sequence of atoms G where $G=A_{i}, A_{x}, A_{j}$. Note that it can be easily generalized to a sequence of atoms of any size, but for a matter of simplicity, we focus on a significant sequence composed of three atoms. In that case, $G^{\prime}-\sigma(B)=\sigma\left(A_{i}\right), \sigma\left(A_{j}\right)$. If there exist a loop in $G^{\prime}-\sigma(B)$ but not in G then there are two possibilities (actually three but two of them are exactly symmetric):
- $A_{i} \nsucc A_{j}$ and $A_{j} \nsucc A_{i}$: Consequently, σ has generated the loop. So, one can deduce that there exist two variables α and β such that $\alpha \in$ $\operatorname{Var}^{i n}\left(\sigma\left(A_{i}\right)\right) \cap \operatorname{Var}^{\text {out }}\left(\sigma\left(A_{j}\right)\right)$ and $\beta \in \operatorname{Var}^{\text {out }}\left(\sigma\left(A_{i}\right)\right) \cap \operatorname{Var}^{\text {in }}\left(\sigma\left(A_{j}\right)\right)$. Thus, there exist $y \in \operatorname{Var}^{\text {out }}\left(A_{i}\right), y^{\prime} \in \operatorname{Var}^{i n}\left(A_{i}\right), z \in \operatorname{Var}^{\text {out }}\left(A_{j}\right)$ and $z^{\prime} \in \operatorname{Var}^{i n}\left(A_{j}\right)$ such that $\alpha \in \operatorname{Var}\left(\sigma\left(y^{\prime}\right)\right) \cap \operatorname{Var}(\sigma(z))$ and $\beta \in$ $\operatorname{Var}(\sigma(y)) \cap \operatorname{Var}\left(\sigma\left(z^{\prime}\right)\right)$. Since those four variables are concerned by the mgu, one can deduce that they also occur in A_{x}. More precisely, according to the linearity of $\operatorname{In}(G)$ and $\operatorname{Out}(G), y^{\prime} \in \operatorname{Var}^{o u t}\left(A_{x}\right), y \in$ $\operatorname{Var}^{i n}\left(A_{x}\right), z \in \operatorname{Var}^{i n}\left(A_{x}\right)$ and $z^{\prime} \in \operatorname{Var}^{\text {out }}\left(A_{x}\right)$. In that case, $A_{i} \succ A_{x}$ and $A_{x} \succ A_{i}$ because $y^{\prime} \in \operatorname{Var}^{\text {out }}\left(A_{x}\right) \cap \operatorname{Var}^{i n}\left(A_{i}\right)$ and $y \in \operatorname{Var}^{\text {out }}\left(A_{i}\right) \cap$ $\operatorname{Var}^{i n}\left(A_{x}\right)$. Consequently, a loop occurs in G. Contradiction.
- $A_{i} \succ A_{j}$ and $A_{j} \nsucc A_{i}$: Consequently, σ has generated the loop. Since $A_{i} \succ A_{j}$, then there exists a variable y such that $y \in \operatorname{Var}^{i n}\left(A_{i}\right) \cap$ $\operatorname{Var}^{\text {out }}\left(A_{j}\right)$. Moreover, if there exists a loop in $G^{\prime}-\sigma(B)$ then there exists a variable α such that $\alpha \in \operatorname{Var}^{\text {out }}\left(\sigma\left(A_{i}\right)\right) \cap \operatorname{Var}^{i n}\left(\sigma\left(A_{j}\right)\right)$. Thus, there exist two variables y^{\prime} and z^{\prime} with $y^{\prime} \in \operatorname{Var}^{\text {out }}\left(A_{i}\right)$ and $z^{\prime} \in \operatorname{Var}^{i n}\left(A_{j}\right)$ such that $\alpha \in \operatorname{Var}\left(\sigma\left(y^{\prime}\right)\right) \cap \operatorname{Var}\left(\sigma\left(z^{\prime}\right)\right)$. Since those two variables are concerned by the mgu, one can deduce that they also occur in A_{x}. More precisely, according to the linearity of $\operatorname{In}(G)$ and $\operatorname{Out}(G), y^{\prime} \in \operatorname{Var}^{i n}\left(A_{x}\right)$ and $z^{\prime} \in \operatorname{Var}^{\text {out }}\left(A_{x}\right)$. In that case, one has $A_{x} \succ A_{i}$ and $A_{j} \succ A_{x}$ because $y^{\prime} \in \operatorname{Var}^{i n}\left(A_{x}\right) \cap \operatorname{Var}^{\text {out }}\left(A_{i}\right)$ and $z^{\prime} \in \operatorname{Var}^{\text {out }}\left(A_{x}\right) \cap \operatorname{Var}^{i n}\left(A_{j}\right)$. Moreover, by hypothesis, $A_{i} \succ A_{j}$. Consequently, a loop occurs in G because $A_{j} \succ A_{x} \succ A_{i} \succ A_{x}$. Contradiction.
- A loop cannot occur in $\sigma(B)$: This is a direct consequence of Lemma 3. Indeed, σ is the mgu of A_{x} which is linear and $H . B$ is constructed from the variables occurring once in H and new variables. Moreover, $\operatorname{In}(B)$ and $\operatorname{Out}(B)$ are linear and the only variables allowed to appear in both $\operatorname{In}(B)$ and $O u t(B)$ are necessarily new and then not instantiated by σ. To create a loop in these conditions would require that two different variables α and β
instantiated by σ would share the same variable i.e. $\operatorname{Var}(\sigma(\alpha)) \cap \operatorname{Var}(\sigma(\beta)) \neq$ \emptyset. Contradicting Lemma 3.
- Suppose that a loop occurs in G^{\prime} but neither in $G^{\prime}-\sigma(B)$ nor in $\sigma(B)$: Let G be the sequence of atoms such that $G=A_{i}, A_{x}$. In that case, $G^{\prime}=$ $\sigma\left(A_{i}\right), \sigma(B)$ with σ the mgu of A_{x} and H. One can extend the schema to any kind of sequence of atoms satisfying the hypothesis of this lemma without loss of generality. We consider B as follows: $B=B_{1}, \ldots, B_{k}$. If there exists a loop in G^{\prime} but neither in $G^{\prime}-\sigma(B)$ nor in $\sigma(B)$ then there exist $B_{k_{1}}, \ldots, B_{k_{n}}$ atoms occurring in B such that $\sigma\left(A_{i}\right) \succ \sigma\left(B_{k_{1}}\right) \succ \ldots \succ \sigma\left(B_{k_{n}}\right) \succ \sigma\left(A_{i}\right)$. So, one can deduce that there exists two variables α and β such that $\alpha \in$ $\operatorname{Var}^{\text {in }}\left(\sigma\left(A_{i}\right)\right) \cap \operatorname{Var}^{\text {out }}\left(\sigma\left(B_{k_{1}}\right)\right)$ and $\left.\beta \in \operatorname{Var}^{\text {out }}\left(\sigma\left(A_{i}\right)\right) \cap \operatorname{Var}^{\text {out }}\left(\sigma\left(B_{k_{n}}\right)\right)\right)$. Consequently, there exists two variables y, z such that $y \in \operatorname{Var}^{i n}\left(A_{i}\right), z \in$ $\operatorname{Var}^{\text {out }}\left(A_{i}\right), \alpha \in \operatorname{Var}(\sigma(y))$ and $\beta \in \operatorname{Var}(\sigma(z))$. Both variables also occur in A_{x}. Suppose that y does not occur in A_{x}. Since σ is the mgu of A_{x} and H and y not in $\operatorname{Var}\left(A_{x}\right), \sigma$ does not instantiate y. Consequently, $\alpha=y$. However, $\operatorname{Var}(\sigma(B)) \subseteq \operatorname{Var}(H) \cup \operatorname{Var}\left(A_{x}\right) \cup \operatorname{Var}(B)$. Moreover, the sets of variables occurring in Prog and in G are supposed to be disjointed. So, y cannot occur in $\sigma(B)$ and then the loop in G^{\prime} does not exist. Thus, y occurs in A_{x} as well as z. Furthermore, since $\operatorname{In}(G)$ and $\operatorname{Out}(G)$ are linear, $y \in \operatorname{Var}^{\text {out }}\left(A_{x}\right)$ and $z \in \operatorname{Var}^{i n}\left(A_{x}\right)$. Consequently, G contains a cycle. Contradicting the hypothesis.
To conclude, G^{\prime} does not contain any loop.
Lemma 4 can be generalized to several steps.
Lemma 5. The assumptions are those of Lemma 4. If $G \sim_{\sigma}^{*} G^{\prime}$, then G^{\prime} is loop free, $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right)$.Out $\left(G^{\prime}\right)$ and $\sigma\left(\operatorname{Var}_{\text {Lin }}^{\text {out }}(G)\right) \cdot \operatorname{In}\left(G^{\prime}\right)$ are both linear.

Proof. Let $G \neg_{\sigma}^{*} G^{\prime}$ be rewritten as follows: $G_{0} \sim_{\sigma_{1}} G_{1} \ldots \sim_{\sigma_{k}} G_{k}$ with $G_{0}=G, G^{\prime}=G_{k}$ and $\sigma=\sigma_{k} \circ \ldots \circ \sigma_{1}$. Let P_{k} be the induction hypothesis defined such that: If $G_{0} \sim_{\sigma}^{*} G_{k}$ then

- G_{k} does not contain any loop,
$-\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}\left(G_{0}\right)\right) \cdot O u t\left(G_{k}\right)$ is linear and
$-\sigma\left(\operatorname{Var}_{L i n}^{o u t}\left(G_{0}\right)\right) \cdot \operatorname{In}\left(G_{k}\right)$ is linear.
Let us proceed by induction.
- P_{0} is trivially true. Indeed, $\operatorname{In}\left(G_{0}\right)$ and $O u t\left(G_{0}\right)$ are linear. Moreover, for any $x \in \operatorname{Var}_{\operatorname{Lin}}^{\text {in }}\left(G_{0}\right)$ (resp. $x \in \operatorname{Var}_{\text {Lin }}^{\text {out }}\left(G_{0}\right)$), one has $x \notin \operatorname{Var}\left(\operatorname{Out}\left(G_{0}\right)\right)$ (resp. $\left.x \notin \operatorname{Var}\left(\operatorname{In}\left(G_{0}\right)\right)\right)$. Thus, $\operatorname{Var}_{\text {Lin }}^{\text {in }}\left(G_{0}\right) \cdot \operatorname{Out}\left(G_{0}\right)$ is linear (resp. $\left.\operatorname{Var}_{\text {Lin }}^{\text {out }}\left(G_{0}\right) \cdot \operatorname{In}\left(G_{0}\right)\right)$.
- Suppose that P_{k} is true and $G_{k} \sim_{\sigma_{k+1}} G_{k+1}$. Since one has $G_{k} \sim_{\sigma_{k+1}} G_{k+1}$, there exist $H \leftarrow B \in \operatorname{Prog}$ and an atom A_{x} occurring in G_{k} such that σ_{k+1} is the mgu of A_{x} and H, and $G_{k+1}=\sigma_{k+1}\left(G_{k}\right)\left[\sigma_{k+1}(H) \leftarrow \sigma_{k+1}(B)\right]$. By hypothesis, one has $\operatorname{Out}\left(G_{k}\right)$ and $\operatorname{In}\left(G_{k}\right)$ linear. Consequently, Lemma 4 can be applied and one obtains that
- $\sigma\left(\operatorname{Var}_{L i n}^{i n}\left(G_{k}\right)\right) \cdot \operatorname{Out}\left(G_{k+1}\right)$ is linear,
- $\sigma\left(\operatorname{Var}_{L i n}^{\text {out }}\left(G_{k}\right) \cdot I n\left(G_{k+1}\right)\right.$ is linear and
- G_{k+1} does not contain any loop.

Moreover, for Prog a non-copying S-CF program, if $G_{i} \leadsto_{\sigma_{i+1}} G_{i+1}$ then one has: For any variable x, y, if $x \in \operatorname{Var}_{\operatorname{Lin}}^{i n}\left(G_{i}\right)$ and $y \in \operatorname{Var}\left(\sigma_{i+1}(x)\right)$ then $y \in \operatorname{Var}_{L i n}^{i n}\left(G_{i+1}\right)$ or $y \notin \operatorname{Var}\left(G_{i+1}\right)$. So, one can conclude that given $\sigma_{k} \circ \ldots \circ \sigma_{1}\left(\operatorname{Var}_{\text {Lin }}^{i n}\left(G_{0}\right)\right)$, for any variable $x \in \operatorname{Var}_{\text {Lin }}^{i n}\left(G_{0}\right)$, for any $y \in$ $\operatorname{Var}\left(\sigma_{k} \circ \ldots \circ \sigma_{1}(x)\right)$, either $y \in \operatorname{Var}_{L i n}^{i n}\left(G_{k}\right)$ or $y \notin \operatorname{Var}\left(G_{k}\right)$.
Let us study the variables of $\bigcup_{y \in \operatorname{Var}}^{\operatorname{Lin}\left(G_{0}\right)}\left(\operatorname{Var}\left(\sigma_{k} \circ \ldots \circ \sigma_{1}(y)\right)\right.$.

- For any variable x such that $x \in \bigcup_{y \in \operatorname{Var}}^{L i n}\left(G_{0}\right)\left(\operatorname{Var}\left(\sigma_{k} \circ \ldots \circ \sigma_{1}(y)\right)\right) \backslash$ $\operatorname{Var}\left(G_{k}\right), x \notin \operatorname{Var}\left(G_{k+1}\right)$. Indeed, an already-used variable cannot be reused for relabelling variables of Prog while the reduction process. Moreover such variables are not instantiated by σ_{k+1} since the mgu σ_{k+1} of A_{x} and H only concerns variables of $\operatorname{Var}(H) \cup \operatorname{Var}\left(A_{x}\right)$. So, for any variable y in $\operatorname{Var}\left(\sigma_{k} \circ \ldots \circ \sigma_{1}(y)\right) \backslash \operatorname{Var}\left(G_{k}\right)$, one has $\sigma_{k+1}(y)=y$ and $y \notin \operatorname{Var}\left(G_{k+1}\right)$. Consequently, for any variable y in $\operatorname{Var}\left(\sigma_{k+1} \circ \sigma_{k} \circ \ldots \circ\right.$ $\left.\left.\sigma_{1}(y)\right)\right) \backslash \operatorname{Var}\left(G_{k}\right), y \notin \operatorname{Var}\left(G_{k+1}\right)$.
- For any variable x such that $x \in \bigcup_{y \in \operatorname{Var}_{\text {Lin }}^{i n}\left(G_{0}\right)}\left(\operatorname{Var}\left(\sigma_{k} \circ \ldots \circ \sigma_{1}(y)\right)\right) \cap$ $\operatorname{Var}\left(G_{k}\right)$, one can deduce that $x \in \operatorname{Var}_{\operatorname{Lin}}^{i n}\left(G_{k}\right)$. Since $\sigma_{k+1}\left(\operatorname{Var}_{\operatorname{Lin}}^{i n}\left(G_{k}\right)\right)$. $\operatorname{Out}\left(G_{k+1}\right)$ is linear, one can deduce that for any $y \in \bigcup_{y \in \operatorname{Var}_{L i n}^{i n}\left(G_{0}\right)}(\operatorname{Var}($ $\left.\left.\sigma_{k} \circ \ldots \circ \sigma_{1}(y)\right)\right) \cap \operatorname{Var}\left(G_{k}\right), \operatorname{Var}\left(\sigma_{k+1} \circ \sigma_{k} \circ \ldots \circ \sigma_{1}(y)\right) \cap \operatorname{Var}\left(O u t\left(G_{k+1}\right)\right)=$ \emptyset.

So, one has $\sigma_{k+1} \circ \sigma_{k} \circ \ldots \circ \sigma_{1}\left(\operatorname{Var}_{\operatorname{Lin}}^{i n}\left(G_{k}\right)\right) . \operatorname{Out}\left(G_{k+1}\right)$ is linear. The proof of $\sigma\left(\operatorname{Var}_{L i n}^{o u t}\left(G_{k}\right) \cdot \operatorname{In}\left(G_{k+1}\right)\right.$ is in some sense symmetric. To conclude, considering the hypothesis of Lemma 4, one has: If $G \neg_{\sigma}^{*} G^{\prime}$, then

- G^{\prime} is loop free;
- $\sigma\left(\operatorname{Var}_{\text {Lin }}^{i n}(G)\right) \cdot O u t\left(G^{\prime}\right)$ is linear;
- $\sigma\left(\operatorname{Var}_{\text {Lin }}^{o u t}(G)\right) \cdot I n\left(G^{\prime}\right)$ is linear.

B Proof of Lemma 1

Proof. Let $G_{0}=P\left(x_{1}, \ldots, x_{k-1}, l, x_{k+1}, \ldots, x_{n}\right)$. Since l is linear, G_{0} is linear and $\operatorname{Var}_{\operatorname{Lin}}^{i n}\left(G_{0}\right)=\operatorname{In}\left(G_{0}\right)$. From Lemma 5, $\theta\left(\operatorname{In}\left(G_{0}\right)\right) . O u t(G)$ is linear and G is loop-free. Note that $\operatorname{In}\left(G_{0}\right)$ and $\operatorname{Out}(G)$ are tuples of variables. Since the critical pair is strict, we deduce that θ does not instantiate the variables of $\operatorname{In}\left(G_{0}\right)$, then $\theta\left(\operatorname{In}\left(G_{0}\right)\right) . O u t(G)$ is a linear tuple of variables. Consequently, a strict critical pair is a S-CF clause.

Since G_{0} is linear, $\operatorname{Var}_{\text {Lin }}^{\text {out }}\left(G_{0}\right)=\operatorname{Var}^{\text {out }}\left(G_{0}\right)$. Thus, from Lemma 5, $\theta\left(\operatorname{Out}\left(G_{0}\right)\right) \cdot \operatorname{In}(G)$ is linear. And since r is linear, the critical pair is a non-copying clause.

Let Prog $=\{P(\widehat{f(x)}, x) \leftarrow$.$\} and consider the rewrite rule f(a) \rightarrow b$. Thus $P(\widehat{f(a)}, y) \sim_{(x / a, y / a)} \emptyset$, which gives rise to the extended critical pair $P(\widehat{b}, a) \leftarrow$., which is not a S-CF clause.

C Proof of Lemma 2

Proof. Consider $f(\vec{s}) \rightarrow r \in R(\vec{s}$ is a tuple of terms), and assume that

$$
P\left(\widehat{x_{1}}, \widehat{f(\vec{s})}, \widehat{\hat{x}_{2}}, \vec{z}\right) \leadsto_{\left[P\left(\widehat{t_{1}}, \widehat{f(\vec{u})}, \widehat{t_{2}}, \vec{v}\right) \leftarrow B, \theta\right]} G \leadsto_{\sigma}^{*} G^{\prime}
$$

such that $\operatorname{Out}\left(G^{\prime}\right)$ is flat, $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \vec{z}, \vec{u}, \vec{v}$ are tuples of distinct variables and $\overrightarrow{t_{1}}$, $\overrightarrow{t_{2}}$ are tuples of terms (however \vec{v} may share some variables with $\overrightarrow{t_{1}} \cdot \overrightarrow{u_{2}} \cdot \overrightarrow{t_{2}}$). This derivation generates the critical pair $(\sigma \circ \theta)\left(P\left(\widehat{x_{1}}, \widehat{r^{\prime}}, \widehat{x_{2}}, \vec{z}\right)\right) \leftarrow G^{\prime}$.

If $l \rightarrow r$ is consuming then P has no input arguments, i.e. \vec{z} and \vec{v} do not exist. Therefore $\sigma \circ \theta$ cannot instantiate the input variables of P, hence the critical pair is strict.

Otherwise \vec{s} is a linear tuple of variables, and $(x / t$ means that the variable x is replaced by t) $\theta=(\vec{v} / \vec{z}) \circ\left(\overrightarrow{x_{1}} / \overrightarrow{t_{1}}, \vec{s} / \vec{u}, \overrightarrow{x_{2}} / \overrightarrow{t_{2}}\right)$, which does not instantiate \vec{z} nor the output variables of B. Moreover $\operatorname{Out}(B)$ is flat, then $\operatorname{Out}(G)=\operatorname{Out}(\theta B)$ is flat. Thus $G^{\prime}=G$ and the critical pair is $P\left(\widehat{\theta \overrightarrow{x_{1}}}, \widehat{\theta r}, \widehat{\theta x_{2}}, \vec{z}\right) \leftarrow G$, which is strict.

D Proof of Theorem 2

Proof. Let $A \in \operatorname{Mod}(\operatorname{Prog})$ s.t. $A \rightarrow_{l \rightarrow r} A^{\prime}$. Then $\left.A\right|_{i}=C[\sigma(l)]$ for some $i \in \mathbb{N}$ and $A^{\prime}=A[i \leftarrow C[\sigma(r)]$.
Since resolution is complete, $A \neg^{*} \emptyset$. Since Prog is normalized, resolution consumes symbols of C one by one. Since Prog is coherent with R, the top symbol of l cannot be generated as an input: it is either consumed in an output argument, or the whole $\sigma(l)$ disappears thanks to an output argument. Consequently $G_{0}=A \sim^{*} G_{k} \sim^{*} \emptyset$ and there exists an atom $A^{\prime \prime}=P\left(t_{1}, \ldots, t_{n}\right)$ in G_{k} and an output argument j s.t. $t_{j}=\sigma(l)$, and along the step $G_{k} \leadsto G_{k+1}$ the top symbol of t_{j} is consumed or t_{j} disappears entirely. On the other hand, since Prog is non-copying, $A^{\prime} \neg^{*} G_{k}\left[A^{\prime \prime} \leftarrow P\left(t_{1}, \ldots, \sigma(r), \ldots, t_{n}\right)\right]$.

If $t_{j}=\sigma(l)$ disappears entirely, it can be replaced by any term, then $A^{\prime} \sim^{*}$ $G_{k}\left[A^{\prime \prime} \leftarrow P\left(t_{1}, \ldots, \sigma(r), \ldots, t_{n}\right)\right] \sim^{*} \emptyset$, hence $A^{\prime} \in \operatorname{Mod}(\operatorname{Prog})$. Otherwise the top symbol of $\sigma(l)$ is consumed along $G_{k} \leadsto G_{k+1}$. Consider new variables x_{1}, \ldots, x_{n} such that $\left\{x_{1}, \ldots, x_{n}\right\} \cap \operatorname{Var}(l)=\emptyset$, and let us define the substitution σ^{\prime} by $\forall i \in\{1, \ldots, n\}, \sigma^{\prime}\left(x_{i}\right)=t_{i}$ and $\forall x \in \operatorname{Var}(l), \sigma^{\prime}(x)=\sigma(x)$. Then $\sigma^{\prime}\left(P\left(x_{1}, \ldots, x_{j-1}, l, x_{j+1}, \ldots, x_{n}\right)\right)=A^{\prime \prime}$, and according to resolution (or narrowing) properties $P\left(x_{1}, \ldots, l, \ldots, x_{n}\right) \sim_{\theta}^{*} \emptyset$ and $\theta \leq \sigma^{\prime}$. This derivation can be decomposed into: $P\left(x_{1}, \ldots, l, \ldots, x_{n}\right) \sim_{\theta_{1}}^{*} G^{\prime} \sim_{\theta_{2}} G \sim_{\theta_{3}}^{*} \emptyset$ where $\theta=\theta_{3} \circ \theta_{2} \circ \theta_{1}$, and s.t. $\operatorname{Out}\left(G^{\prime}\right)$ is not flat and $\operatorname{Out}(G)$ is flat ${ }^{11}$.
The derivation $P\left(x_{1}, \ldots, l, \ldots, x_{n}\right) \sim_{\theta_{1}}^{*} G^{\prime} \sim_{\theta_{2}} G \quad$ can be commuted into: $P\left(x_{1}, \ldots, l, \ldots, x_{n}\right) \sim_{\gamma_{1}}^{*} B^{\prime} \sim_{\gamma_{2}} B \sim_{\gamma_{3}}^{*} G$ s.t. $\operatorname{Out}(B)$ is flat, Out $\left(B^{\prime}\right)$ is not flat, and within $P\left(x_{1}, \ldots, l, \ldots, x_{n}\right) \sim_{\gamma_{1}}^{*} B^{\prime} \sim_{\gamma_{2}} B$ resolution is applied only on atoms whose output is not flat, and we have $\gamma_{3} \circ \gamma_{2} \circ \gamma_{1}=\theta_{2} \circ \theta_{1}$. Then

[^8]$\gamma_{2} \circ \gamma_{1}\left(P\left(x_{1}, \ldots, r, \ldots, x_{n}\right)\right) \leftarrow B$ is a critical pair. By hypothesis, it is convergent, then $\gamma_{2} \circ \gamma_{1}\left(P\left(x_{1}, \ldots, r, \ldots, x_{n}\right)\right) \rightarrow^{*} B$. Note that $\gamma_{3}(B) \rightarrow^{*} G$ and recall that $\theta_{3} \circ \gamma_{3} \circ \gamma_{2} \circ \gamma_{1}=\theta_{3} \circ \theta_{2} \circ \theta_{1}=\theta$. Then $\theta\left(P\left(x_{1}, \ldots, r, \ldots, x_{n}\right)\right) \rightarrow^{*} \theta_{3}(G) \rightarrow^{*} \emptyset$, and since $\theta \leq \sigma^{\prime}$ we get $P\left(t_{1}, \ldots, \sigma(r), \ldots, t_{n}\right)=\sigma^{\prime}\left(P\left(x_{1}, \ldots, r, \ldots, x_{n}\right)\right) \rightarrow^{*} \emptyset$. Therefore $A^{\prime} \neg^{*} G_{k}\left[A^{\prime \prime} \leftarrow P\left(t_{1}, \ldots, \sigma(r), \ldots, t_{n}\right)\right] \neg^{*} \emptyset$, hence $A^{\prime} \in \operatorname{Mod}(\operatorname{Prog})$. By trivial induction, the proof can be extended to the case of several rewrite steps.

E Ensuring finitely many critical pairs

The following example illustrates a situation where the number of critical pairs is infinite.

Example 14. Let $\Sigma=\left\{f^{\backslash 2}, c^{\backslash 1}, d^{\backslash 1}, s^{\backslash 1}, a^{\backslash 0}\right\}, f(c(x), y) \rightarrow d(y)$ be a rewrite rule, and $\left\{P_{0}(\widehat{f(x, y)}) \leftarrow P_{1}(\widehat{x}, \widehat{y}) . P_{1}(\widehat{x}, \widehat{s(y)}) \leftarrow P_{1}(\widehat{x}, \widehat{y}) . P_{1}(\widehat{c(x)}, \widehat{y}) \leftarrow P_{2}(\widehat{x}, \widehat{y})\right.$. $\left.P_{2}(\widehat{a}, \widehat{a}) \leftarrow.\right\}$ a S-CF programs. Then $\left.P_{0}(\widehat{f(x), y})\right) \rightarrow P_{1}(\widehat{c(x)}, \widehat{y}) \sim y / s(y)$ $P_{1}(\widehat{c(x)}, \widehat{y}) \sim_{y / s(y)} \cdots P_{1}(\widehat{c(x)}, \widehat{y}) \rightarrow P_{2}(\widehat{x}, \widehat{y})$. Resolution is applied only on nonflat atoms and the last atom obtained by this derivation is flat. The composition of substitutions along this derivation gives $y / s^{n}(y)$ for some $n \in \mathbb{N}$. There are infinitely many such derivations, which generates infinitely many critical pairs of the form $\left.P_{0}\left(\widehat{\left(s^{n}(y)\right.}\right)\right) \leftarrow P_{2}(\widehat{x}, \widehat{y})$.

This is annoying since the completion process presented in the following needs to compute all critical pairs. This is why we define sufficient conditions to ensure that a given finite S-CF program has finitely many critical pairs.

Definition 13.
Prog is empty-recursive if there exist a predicate symbol P and two tuples $\vec{x}=$ $\left(x_{1}, \ldots, x_{n}\right), \vec{y}=\left(y_{1}, \ldots, y_{k}\right)$ composed of distinct variables s.t. $P(\widehat{\vec{x}} . \vec{y}) \sim_{\sigma}^{+}$ $A_{1}, \ldots, P\left(\widehat{\vec{x}^{\prime}} \cdot \overrightarrow{t^{\prime}}\right), \ldots, A_{k}$ where $\overrightarrow{x^{\prime}}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$ is a tuple of variables and there exist i, j s.t. $x_{i}^{\prime}=\sigma\left(x_{i}\right)$ and $\sigma\left(x_{j}\right)$ is not a variable and $x_{j}^{\prime} \in \operatorname{Var}\left(\sigma\left(x_{j}\right)\right)$.

Example 15. Let Prog be the S-CF program defined as follows:
$\operatorname{Prog}=\left\{P\left(\widehat{x^{\prime}}, \widehat{s\left(y^{\prime}\right)}\right) \leftarrow P\left(\widehat{x^{\prime}}, \widehat{y^{\prime}}\right) . \quad P(\widehat{a}, \widehat{b}) \leftarrow.\right\}$ From $P(\widehat{x}, \widehat{y})$, one can obtained the following derivation: $P(\widehat{x}, \widehat{y}) \leadsto\left[x / x^{\prime}, y / s\left(y^{\prime}\right)\right] P\left(\widehat{x^{\prime}}, \widehat{y^{\prime}}\right)$. Consequently, Prog is empty-recursive since $\sigma=\left[x / x^{\prime}, y / s\left(y^{\prime}\right)\right], x^{\prime}=\sigma(x)$ and y^{\prime} is a variable of $\sigma(y)=s\left(y^{\prime}\right)$.

The following lemma shows that the non empty-recursiveness of a S-CF program is sufficient to ensure the finiteness of the number of critical pairs.

Lemma 6. Let Prog be a normalized S-CF program.
If Prog is not empty-recursive, then the number of critical pairs is finite.
Remark 2. Note that the S-CF program of Example 14 is normalized and has infinitely many critical pairs. However it is empty-recursive because
$P_{1}(\widehat{x}, \widehat{y}) \leadsto_{\left[x / x^{\prime}, y / s\left(y^{\prime}\right)\right]} P_{1}\left(\widehat{x^{\prime}}, \widehat{y^{\prime}}\right)$.

Proof. By contrapositive. Let us suppose there exist infinitely many critical pairs. So there exist P_{1} and infinitely many derivations of the form
(i): $P_{1}\left(x_{1}, \ldots, x_{k-1}, l, x_{k+1}, \ldots, x_{n}\right) \neg_{\alpha}^{*} G^{\prime} \sim_{\theta} G$ (the number of steps is not bounded). As the number of predicates is finite and every predicate has a fixed arity, there exists a predicate P_{2} and a derivation of the form
(ii): $P_{2}\left(t_{1}, \ldots, t_{p}\right) \sim{ }_{\sigma}^{k} G_{1}^{\prime \prime}, P_{2}\left(t_{1}^{\prime}, \ldots, t_{p}^{\prime}\right), G_{2}^{\prime \prime}$ (with $k>0$) included in some derivation of (i), strictly before the last step, such that:

1. $\operatorname{Out}\left(G_{1}^{\prime \prime}\right)$ and $\operatorname{Out}\left(G_{2}^{\prime \prime}\right)$ are flat and the derivation from $P_{2}\left(t_{1}, \ldots, t_{p}\right)$ can be applied on $P_{2}\left(t_{1}^{\prime}, \ldots, t_{p}^{\prime}\right)$ again, which gives rise to an infinite derivation.
2. σ is not empty and there exists a variable x in $P_{2}\left(t_{1}, \ldots, t_{p}\right)$ such that $\sigma(x)=t$ and t is not a variable and contains a variable y that occurs in $P_{2}\left(t_{1}^{\prime}, \ldots, t_{p}^{\prime}\right)$. Otherwise $\sigma \circ \ldots \circ \sigma$ would always be a variable renaming and there would be finitely many critical pairs.
3. There is at least one non-variable term (let t_{j}) in output arguments of $P_{2}\left(t_{1}, \ldots, t_{p}\right)$ (due to the definition of critical pairs) such that $t_{j}^{\prime}=t_{j}{ }^{12}$. As we use a S-CF clause in each derivation step, the output argument t_{j}^{\prime} matches a variable (output argument) in the body of the last clause used in (ii). As $t_{j}^{\prime}=t_{j}$, the output argument t_{j} matches a variable (output argument) in head of the first clause used in (ii). So, for each variable x occurring in the non-variable output terms of P_{2}, we have $\sigma(x)=x$.
4. From the previous item, we deduce that the variable x found in item 2 is one of the terms t_{1}, \ldots, t_{p}, say t_{k}. We can assume that y is t_{k}^{\prime}. t_{k} is an output argument of P_{2} because it matches a non-variable and only output arguments are non-variable in the head of S-CF clause.

If in derivation (ii) we replace all non-variable output terms by new variables, we obtain a new derivation ${ }^{13}$
(iii): $P_{2}\left(x_{1}, \ldots, x_{n}, t_{n+1}, \ldots, t_{p}\right) \sim \sigma_{\sigma^{\prime}}^{k} G_{1}^{\prime \prime \prime}, P_{2}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, t_{n+1}^{\prime}, \ldots, t_{p}^{\prime}\right), G_{2}^{\prime \prime \prime}$ and there exists i, k (in $\{1, \ldots n\}$) such that $\sigma^{\prime}\left(x_{i}\right)=x_{i}^{\prime}$ (at least one non-variable term (in output arguments) in the (ii) derivation), and $\sigma^{\prime}\left(x_{k}\right)=t_{k}, x_{k}^{\prime}$ is a variable of t_{k}. We conclude that Prog is empty-recursive.

Deciding the empty-recursiveness of a S-CF program seems to be a difficult problem (undecidable ?). Nevertheless, we propose a sufficient syntactic condition to ensure that a S-CF program is not empty-recursive.

Definition 14.

The S-CF clause $P\left(\widehat{t_{1}}, \ldots, \widehat{t_{n}}, x_{1}, \ldots, x_{k}\right) \leftarrow A_{1}, \ldots, Q(\ldots), \ldots, A_{m}$ is pseudoempty over Q if there exist i, j s.t.

$$
-t_{i} \text { is a variable, }
$$

[^9]- and t_{j} is not a variable,
- and $\exists x \in \operatorname{Var}\left(t_{j}\right), x \neq t_{i} \wedge\left\{x, t_{i}\right\} \subseteq \operatorname{VarOut}(Q(\ldots))$.

Roughly speaking, when making a resolution step issued from the following flat atom $P\left(\widehat{y_{1}}, \ldots, \widehat{y_{n}}, z_{1}, \ldots, z_{k}\right)$, the variable y_{i} is not instantiated, and y_{j} is instantiated by something that is synchronized with y_{i} (in $Q(\ldots)$).

The S-CF clause $H \leftarrow B$ is pseudo-empty if there exists some Q s.t. $H \leftarrow B$ is pseudo-empty over Q.

The S-CF clause $P\left(\widehat{t_{1}}, \ldots, \widehat{t_{n}}, x_{1}, \ldots, x_{n^{\prime}}\right) \leftarrow A_{1}, \ldots, Q\left(\widehat{y_{1}}, \ldots, \widehat{y_{k}}, s_{1}, \ldots, s_{k^{\prime}}\right), \ldots, A_{m}$ is empty over Q if for all $y_{i},\left(\exists j, t_{j}=y_{i}\right.$ or $\left.y_{i} \notin \operatorname{Var}\left(P\left(\widehat{t_{1}}, \ldots, \widehat{t_{n}}, x_{1}, \ldots, x_{n^{\prime}}\right)\right)\right)$.

Example 16. The S-CF clause $P(\widehat{x}, \widehat{f(x)}, \widehat{z}) \leftarrow Q(\widehat{x}, \widehat{z})$ is both pseudo-empty (thanks to the second and the third argument of P) and empty over Q (thanks to the first and the third argument of P).

Definition 15. Using Definition 14, let us define two relations over predicate symbols.
$-P_{1} \unrhd_{\text {Prog }} P_{2}$ if there exists in Prog a clause empty over P_{2} of the form $P_{1}(\ldots) \leftarrow A_{1}, \ldots, P_{2}(\ldots), \ldots, A_{n}$. The reflexive-transitive closure of $\unrhd_{\text {Prog }}$ is denoted by $\unrhd_{\text {Prog }}^{*}$.
$-P_{1}>_{\text {Prog }} P_{2}$ if there exist in Prog predicates $P_{1}^{\prime}, P_{2}^{\prime}$ s.t. $P_{1} \unrhd_{\text {Prog }}^{*} P_{1}^{\prime}$ and $P_{2}^{\prime} \unrhd_{P r o g}^{*} P_{2}$, and a clause pseudo-empty over P_{2}^{\prime} of the form
$P_{1}^{\prime}(\ldots) \leftarrow A_{1}, \ldots, P_{2}^{\prime}(\ldots), \ldots, A_{n}$. The transitive closure of $>_{P r o g}$ is denoted $b y>_{\text {Prog }}^{+}$.

Prog is cyclic if there exists a predicate P s.t. $P>_{\text {Prog }}^{+} P$.
Example 17. Let $\Sigma=\left\{f^{\backslash 1}, h^{\backslash 1}, a^{\backslash 0}\right\}$. Let Prog be the following S-CF program $\{P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow Q(\widehat{x}, \widehat{z}), R(\widehat{y}) . Q(\widehat{x}, \widehat{g(y, z)}) \leftarrow P(\widehat{x}, \widehat{y}, \widehat{z}) . R(\widehat{a}) \leftarrow \cdot Q(\widehat{a}, \widehat{a}) \leftarrow$.\}. One has $P>_{\text {Prog }} Q$ and $Q>_{\text {Prog }} P$. Thus, Prog is cyclic.

The lack of cycles is the key point of our technique since it ensures the finiteness of the number of critical pairs.

Lemma 7. If Prog is not cyclic, then Prog is not empty-recursive, consequently the number of critical pairs is finite.

Proof. By contrapositive. Let us suppose that Prog is empty recursive. So it exists P s.t. $P\left(\widehat{x_{1}}, \ldots, \widehat{x_{n}}, y_{1}, \ldots, y_{n^{\prime}}\right) \sim_{\sigma}^{+} A_{1}, \ldots, P\left(\widehat{x_{1}^{\prime}}, \ldots, \widehat{x_{n}^{\prime}}, t_{1}^{\prime}, \ldots, t_{n^{\prime}}^{\prime}\right), \ldots, A_{k}$ where $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ are variables and there exist i, j s.t. $x_{i}^{\prime}=\sigma\left(x_{i}\right)$ and $\sigma\left(x_{j}\right)$ is not a variable and $x_{j}^{\prime} \in \operatorname{Var}\left(\sigma\left(x_{j}\right)\right)$. We can extract from the previous derivation the following derivation which has p steps $(p \geq 1) . P\left(\widehat{x_{1}}, \ldots, \widehat{x_{n}}, y_{1}, \ldots, y_{n^{\prime}}\right)=$ $Q^{0}\left(\widehat{x_{1}}, \ldots, \widehat{x_{n}}, y_{1}, \ldots, y_{n^{\prime}}\right) \sim \alpha_{1}$ $B_{1}^{1} \ldots Q^{1}\left(\widehat{x_{1}^{1}}, \ldots, \widehat{x_{n_{1}}^{1}}, t_{1}^{1}, \ldots, t_{n_{1}^{\prime}}^{1}\right) \ldots B_{k_{1}}^{1} \overbrace{\alpha_{2}}$ $\left.B_{1}^{1} \ldots B_{1}^{2} \ldots Q^{2} \widehat{\left(x_{1}^{2}\right.}, \ldots, \widehat{x_{n_{2}}^{2}}, t_{1}^{2}, \ldots, t_{n_{2}^{\prime}}^{2}\right) \ldots B_{k_{2}}^{2} \ldots B_{k_{1}}^{1} \sim_{\alpha_{3}} \ldots \sim_{\alpha_{p}}$
$B_{1}^{1} \ldots B_{1}^{p} \ldots Q^{p}\left(\widehat{x_{1}^{p}}, \ldots, \widehat{x_{n_{p}}^{p}}, t_{1}^{p}, \ldots, t_{n_{p}^{\prime}}^{p}\right) \ldots B_{k_{p}}^{p} \ldots B_{k_{1}}^{1}$
where $\left.Q^{p} \widehat{x_{1}^{p}}, \ldots, \widehat{x_{n_{p}}^{p}}, t_{1}^{p}, \ldots, t_{n_{p}^{\prime}}^{p}\right)=P\left(\widehat{x_{1}^{\prime}}, \ldots, \widehat{x_{n}^{\prime}}, t_{1}^{\prime}, \ldots, t_{n^{\prime}}^{\prime}\right)$.
For each k (after k steps in the previous derivation), $\alpha_{k} \circ \alpha_{k-1} \ldots \circ \alpha_{1}\left(x_{i}\right)$ is a variable of $\operatorname{Out}\left(Q^{k}\left(\widehat{x_{1}^{k}}, \ldots, \widehat{x_{n_{k}}^{k}}, t_{1}^{k}, \ldots, t_{n_{k}^{\prime}}^{k}\right)\right)$ and $\alpha_{k} \circ \alpha_{k-1} \ldots \circ \alpha_{1}\left(x_{j}\right)$ is either a variable of $\operatorname{Out}\left(Q^{k}\left(\widehat{x_{1}^{k}}, \ldots, \widehat{x_{n_{k}}^{k}}, t_{1}^{k}, \ldots, t_{n_{k}^{\prime}}^{k}\right)\right)$ or a non-variable term containing a variable of $\operatorname{Out}\left(Q^{k}\left(\widehat{x_{1}^{k}}, \ldots, \widehat{x_{n_{k}}^{k}}, t_{1}^{k}, \ldots, t_{n_{k}^{\prime}}^{k}\right)\right)$.

Each derivation step issued from Q^{k} uses either a clause pseudo-empty over Q^{k+1} and we deduce $Q^{k}>_{\operatorname{Prog}} Q^{k+1}$, or an empty clause over Q^{k+1} and we deduce $Q^{k} \unrhd_{\text {Prog }} Q^{k+1}$. At least one step uses a pseudo-empty clause otherwise no variable from x_{1}, \ldots, x_{n} would be instantiated by a non-variable term containing at least one variable in $x_{1}^{\prime}, \ldots, x_{n}^{\prime}$.
We conclude that $P=Q^{0} o p_{1} Q^{1} o p_{2} Q^{2} \ldots Q^{p-1} o p_{p} Q^{p}=P$ with each $o p_{i}$ is $>_{\text {Prog }}$ or $\unrhd_{\text {Prog }}$ and there exists k such that $o p_{k}$ is $>_{\text {Prog }}$. Therefore $P>_{\text {Prog }}^{+} P$, so Prog is cyclic.

Thus, if Prog is not cyclic, then all is fine. Otherwise, we have to transform Prog into Prog' such as Prog' is not cyclic and $\operatorname{Mod}(\operatorname{Prog}) \subseteq \operatorname{Mod}\left(\operatorname{Prog}^{\prime}\right)$.

The transformation is based on the following observation. If Prog is cyclic, there is at least one pseudo-empty clause that participates in a cycle. In Example $17, P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow Q(\widehat{x}, \widehat{z}), R(\widehat{y})$ is a pseudo-empty clause over Q involved in the cycle. To remove the cycle, we transform it into $P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow$ $Q\left(\widehat{x}, \widehat{x_{2}}\right), R\left(\widehat{x_{1}}\right), Q\left(\widehat{x_{3}}, \widehat{z}\right), R(\widehat{y})\left(x_{1}, x_{2}, x_{3}\right.$ are new variables), which is not pseudoempty anymore. The main process is described in Definition 19. Definitions 16, 17 and 18 are preliminary definitions used in Definition 19. Example 18 illustrates the definitions. If there are input arguments then some variables occurring in the input arguments of the body must also be renamed in order to get a non-copying S-CF clause.

Definition 16. P is unproductive (in Prog) if

$$
\neg\left(\exists t_{1}, \ldots, t_{n}, t_{1}^{\prime}, \ldots, t_{k}^{\prime} \in T_{\Sigma}, P\left(\widehat{t_{1}}, \ldots, \widehat{t_{n}}, t_{1}^{\prime}, \ldots, t_{k}^{\prime}\right) \in \operatorname{Mod}(\operatorname{Prog})\right) .
$$

Definition 17 (simplify). Let $H \leftarrow A_{1}, \ldots, A_{n}$ be a S-CF clause, and for each i, let us write $A_{i}=P_{i}(\ldots)$.
If there exists P_{i} s.t. P_{i} is unproductive then $\operatorname{simplify}\left(H \leftarrow A_{1}, \ldots, A_{n}\right)$ is the empty set, otherwise it is the set that contains only the clause $H \leftarrow B_{1}, \ldots, B_{m}$ such that

$$
\begin{aligned}
& -\left\{B_{i} \mid 0 \leq i \leq m\right\} \subseteq\left\{A_{i} \mid 0 \leq i \leq n\right\} \text { and } \\
& -\forall i \in\{1, \ldots, n\},\left(\neg (\exists j , B _ { j } = A _ { i }) \Leftrightarrow \quad \left(\operatorname{Var}\left(A_{i}\right) \cap \operatorname{Var}(H)=\emptyset \wedge \forall k \neq\right.\right. \\
& \left.\left.\quad i, \operatorname{Var}\left(A_{i}\right) \cap \operatorname{Var}\left(A_{k}\right)=\emptyset\right)\right) .
\end{aligned}
$$

In other words, simplify deletes unproductive clauses, or it removes the atoms of the body that contain only free variables.

Remark 3. Let $H \leftarrow B$ be a non-copying S-CF clause. If the variable x occurs several times in B then $x \notin \operatorname{Var}(H)$.

Definition 18 (unSync). Let $H \leftarrow B$ be a non-copying S-CF clause.
Let us write $\operatorname{Out}(H)=\left(t_{1}, \ldots, t_{n}\right)$ and $\operatorname{In}(B)=\left(s_{1}, \ldots, s_{k}\right)$.
$\operatorname{unSync}(H \leftarrow B)=\operatorname{simplify}\left(H \leftarrow \sigma_{0}(B), \sigma_{1}(B)\right)$ where σ_{0}, σ_{1} are substitutions built as follows. $\forall x \in \operatorname{Var}(B)$:
$\sigma_{0}(x)=\left\{\begin{array}{l}x \text { if } x \in \operatorname{VarOut}(B) \wedge \exists i, t_{i}=x \\ x \text { if } x \in \operatorname{VarIn}(B) \cap \operatorname{VarIn}(H) \wedge \exists j,\left(s_{j}=x\right) \\ a \text { fresh variable otherwise }\end{array}\right.$
$\sigma_{1}(x)=\left\{\begin{array}{l}x \text { if } x \in \operatorname{VarOut}(B) \wedge \exists i,\left(t_{i} \notin \operatorname{Var} \wedge x \in \operatorname{Var}\left(t_{i}\right)\right) \\ x \text { if } x \in \operatorname{VarIn}(B) \cap \operatorname{VarIn}(H) \wedge \exists j,\left(s_{j} \notin \operatorname{Var} \wedge x \in \operatorname{Var}\left(s_{j}\right)\right) \\ \text { a fresh variable otherwise }\end{array}\right.$
Definition 19 (removeCycles). Let Prog be a S-CF program. If Prog is not cyclic, removeCycles(Prog) $=$ Prog otherwise removeCycles $($ Prog $)=$ removeCycles $\left(\{\operatorname{unSync}(H \leftarrow B)\} \cup\right.$ Prog' $\left.^{\prime}\right)$ where $H \leftarrow B$ is a pseudo-empty clause involved in a cycle and $\operatorname{Prog}^{\prime}=\operatorname{Prog} \backslash\{H \leftarrow B\}$.

Example 18. Let Prog be the S-CF program of Example 17. Since Prog is cyclic, let us compute removeCycles $($ Prog $)$. The pseudo-empty S-CF clause $P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow Q(\widehat{x}, \widehat{z}), R(\widehat{y})$ is involved in the cycle. Consequently, unSync is applied on it. According to Definition 18, one obtains σ_{0} and σ_{1} where $\sigma_{0}=$ $\left[x / x, y / x_{1}, z / x_{2}\right]$ and $\sigma_{1}=\left[x / x_{3}, y / y, z / z\right]$. Thus, one obtains the S-CF clause $P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow Q\left(\widehat{x}, \widehat{x_{2}}\right), R\left(\widehat{x_{1}}\right), Q\left(\widehat{x_{3}}, \widehat{z}\right), R(\widehat{y})$. Note that according to Definition 18, simplify is applied and removes $R\left(\widehat{x_{1}}\right)$ from the body. Following Definitions 17 and 19, one has to remove $P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow Q(\widehat{x}, \widehat{z}), R(\widehat{y})$ from Prog and to add $P(\widehat{x}, \widehat{h(y)}, \widehat{f(z)}) \leftarrow Q\left(\widehat{x}, \widehat{x_{2}}\right), Q\left(\widehat{x_{3}}, \widehat{z}\right), R(\widehat{y})$ instead. Note that the atom $R\left(\widehat{x_{1}}\right)$ has been removed using simplify. Note also that there is no cycle anymore.

Lemma 8 describes that our transformation preserves at least and may extend the initial least Herbrand Model.

Lemma 8. Let Prog be a non-copying S-CF program and
Prog' $=$ removeCycles(Prog). Then Prog' is a non-copying and non-cyclic S-CF program, and $\operatorname{Mod}(\operatorname{Prog}) \subseteq \operatorname{Mod}\left(\right.$ Prog $\left.^{\prime}\right)$. Moreover, if Prog is normalized, then so is Prog'.

Consequently, there are finitely many critical pairs in Prog' ${ }^{\prime}$.

F Proof of Theorem 3

Proof. The proof is straightforward.

G Example 10 in Detail

Let $I=\{f(a, a)\}$ and $R=\{f(x, y) \rightarrow u(f(v(x), w(y)))\}$. Intuitively, the exact set of descendants is $R^{*}(I)=\left\{u^{n}\left(f\left(v^{n}(a), w^{n}(a)\right)\right) \mid n \in \mathbb{N}\right\}$ where u^{n} means that u occurs n times. We define Prog $=\left\{P_{f}(\widehat{f(x, y)}) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})\right.$. (1), $\left.P_{a}(\widehat{a}) \leftarrow .(2)\right\}$. Note that $L_{\text {Prog }}\left(P_{f}\right)=I$.

Using clause (1) we have $P_{f}(\widehat{f(x, y)}) \rightarrow{ }_{(1)} P_{a}(\widehat{x}), P_{a}(\widehat{y})$ generating the critical pair: $P_{f}(u(f(\widehat{v(x), w}(y)))) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})$. In order to normalize this critical pair, we choose to generate symbols u, f as output, v, w as input. Moreover only one predicate symbol of arity 3 is allowed. It produces three new S-CF clauses : $P_{f}(\widehat{z}) \leftarrow P_{1}(\widehat{z}, x, y), P_{a}(\widehat{x}), P_{a}(\widehat{y}) .(3), P_{1}(\widehat{u(z)}, x, y) \leftarrow P_{1}(\widehat{z}, v(x), w(y))$. (4) and $P_{1}(\widehat{f(x, y)}, x, y) \leftarrow$. (5).

Now $\left.\left.P_{f}\left(\widehat{f\left(x^{\prime}, y^{\prime}\right.}\right)\right) \rightarrow{ }_{(3)} P_{1}\left(\widehat{f\left(x^{\prime}, y^{\prime}\right.}\right), x, y\right), P_{a}(\widehat{x}), P_{a}(\widehat{y}) \leadsto(5), \sigma P_{a}(\widehat{x}), P_{a}(\widehat{y})$ where $\sigma=\left(x^{\prime} / x, y^{\prime} / y\right)$. It generates the critical pair $P_{f}(u(f(\widehat{v(x), w}(y)))) \leftarrow$ $P_{a}(\widehat{x}), P_{a}(\widehat{y})$ again, which is convergent. Since one has $P_{1}\left(\widehat{f\left(x^{\prime}, y^{\prime}\right)}, x, y\right) \sim(5),\left(x^{\prime} / x, y^{\prime} / y\right)$ \emptyset, the critical pair $P_{1}(u(f(\widehat{v(x), w}(y))), x, y) \leftarrow$. can be computed, but it is already convergent.

No other critical pair is detected. Then, we get the S-CF program $\operatorname{Prog}^{\prime}$ composed of clauses (1) to (5), and note that $L_{\text {Prog}}\left(P_{f}\right)=R^{*}(I)$ indeed.

H Example 11 in Detail

Let $I=\left\{d_{1}(a, a, a)\right\}$ and

$$
R=\left\{\begin{array}{ll}
d_{1}(x, y, z) \xrightarrow{1} d_{1}(h(x), i(y), s(z)), & d_{1}(x, y, z) \xrightarrow{2} d_{2}(x, y, z) \\
d_{2}(x, y, s(z)) \xrightarrow{3} d_{2}(f(x), g(y), z), & d_{2}(x, y, a) \xrightarrow{4} c(x, y)
\end{array}\right\}
$$

$R^{*}(I)$ is composed of all terms appearing in the following derivation:
$d_{1}(a, a, a) \xrightarrow{1^{n}} d_{1}\left(h^{n}(a), i^{n}(a), s^{n}(a)\right) \xrightarrow{2} d_{2}\left(h^{n}(a), i^{n}(a), s^{n}(a)\right)$

$$
\xrightarrow{3}^{k} d_{2}\left(f^{k}\left(h^{n}(a)\right), g^{k}\left(i^{n}(a)\right), s^{n-k}(a)\right) \xrightarrow{4} c\left(f^{n}\left(h^{n}(a)\right), g^{n}\left(i^{n}(a)\right)\right) .
$$

Note that the last rewrite step by rule 4 is possible only when $k=n$. Let Prog be an S-CF program such that Prog $=\left\{P_{d}\left(d_{1} \widehat{(x, y, z)}\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})\right.$. (1), $P_{a}(\widehat{a}) \leftarrow$. (2) $\}$. Thus $L_{\text {Prog }}\left(P_{d}\right)=I$.

By applying clause (1) and using rule 1 , we get the critical pair:
$P_{d}\left(d_{1}(h(x), i(y), s(z))\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$. To normalize it, we choose to generate all symbols as output. Then the following clauses (3) and (4) are added into Prog: $\left.P_{d}\left(d_{1} \widehat{(x, y, z}\right)\right) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})$. (3) and $P_{1}(\widehat{h(x)}, \widehat{i(y)}, \widehat{s(z)}) \leftarrow$ $P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$. (4). By applying clause (1) and using rule 2, we obtain the critical pair $P_{d}\left(d_{2}(\widehat{x, y}, z)\right) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$. (5). This critical pair being already normalized, it is directly added into Prog.

We obtain the critical pair $P_{d}\left(d_{1}(h(x), i(y), s(z))\right) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})$ by applying clause (3) and rule 1. To normalize it, we choose to generate all symbols as output. It produces clause (3) again, as well as $P_{1}(\widehat{h(x)}, \widehat{i(y)}, \widehat{s(z)}) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})$. (6).

Applying clause (3) and using rule 2, we get the critical pair:
$P_{d}\left(d_{2} \widehat{(x, y, z)}\right) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})$. (7) which is already normalized. Thus, it is directly added into Prog. Applying clause (5) and using rule 4, we get the critical pair $P_{d}(\widehat{c(x, y)}) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})$. (8) which is already normalized. Consequently, it is directly added into Prog.

By applying clauses (7) and (4), and using rule 3, we get the critical pair: $P_{d}\left(d_{2}\left(f(h(\widehat{x)), g}(i(y)), z)) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})\right.\right.$. To normalize it, we choose to generate d_{2}, f, g as output, and h, i as input. It produces:

$$
\begin{aligned}
& P_{d}\left(d_{2}(x, y, z)\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right), P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right), P_{a}\left(\widehat{z^{\prime}}\right) \\
& P_{2}\left(\widehat{f(x)}, \widehat{g(y)}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z^{\prime}\right) \\
& P_{2}(\widehat{x}, \widehat{y}, \widehat{z}, x, y, z) \leftarrow .
\end{aligned}
$$

Now, clause (10^{\prime}) may provide an infinite number of critical pairs. Applying removeCycles makes clause $\left(10^{\prime}\right)$ be substituted by $P_{2}\left(\widehat{f(x)}, \widehat{g(y)}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right) \leftarrow$ $P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z_{1}}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z_{1}^{\prime}\right), P_{2}\left(\widehat{x_{1}}, \widehat{y_{1}}, \widehat{z}, h\left(x_{1}^{\prime}\right), i\left(y_{1}^{\prime}\right), z^{\prime}\right)(\mathbf{1 0})$.

By applying clauses (7) and (6), and using rule 3, we get the critical pair: $P_{d}\left(d_{2}\left(f(h(\widehat{x)), g}(i(y)), z)) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})\right.\right.$. We normalize it as previously. We get $\left.P_{d}\left(d_{2} \widehat{(x, y, z}\right)\right) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, x^{\prime}, y^{\prime}, z^{\prime}\right), P_{1}\left(\widehat{x^{\prime}}, \widehat{y^{\prime}}, \widehat{z^{\prime}}\right)$. (12) as well as (10), (11) again.

With clauses (9 or 12), (10), and rule 3, we get the convergent critical pairs $P_{d}\left(d_{2}\left(f(f(\widehat{x)), g}(g(y)), z)) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z_{1}}, h\left(h\left(x^{\prime}\right)\right), i\left(i\left(y^{\prime}\right)\right), z_{1}^{\prime}\right), P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right), P_{a}(\widehat{z})\right.\right.$ and $P_{d}\left(d_{2}\left(f(f(\widehat{x)), g}(g(y)), z)) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z_{1}}, h\left(h\left(x^{\prime}\right)\right), i\left(i\left(y^{\prime}\right)\right), z_{1}^{\prime}\right), P_{1}\left(\widehat{x^{\prime}}, \widehat{y^{\prime}}, \widehat{z}\right)\right.\right.$.

By applying clauses (9 or 12) and (11), and using rule 3, we get the convergent critical pairs $P_{d}\left(d_{2}\left(f(h(\widehat{x)), g}(i(y)), z)) \leftarrow P_{1}(\widehat{x}, \widehat{y}, \widehat{z})\right.\right.$. and $P_{d}\left(d_{2}(f(h(\widehat{x)), g}(i(y)), z)) \leftarrow\right.$ $P_{a}(\widehat{x}), P_{a}(\widehat{y}), P_{a}(\widehat{z})$. By applying clauses 9 and 11, and using rule 4 , we get the convergent critical pair $P_{d}(\widehat{c(x, y)}) \leftarrow P_{a}(\widehat{x}), P_{a}(\widehat{y})$. Applying clauses 9 and 10, and using rule 4 , we get the critical pair: $P_{d}(c(f \widehat{(x), g}(y))) \leftarrow P_{2}\left(\widehat{x}, \widehat{y}, \widehat{z}, h\left(x^{\prime}\right), i\left(y^{\prime}\right), z^{\prime}\right)$, $P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right)$. Its normalization gives the clauses: $P_{3}(\widehat{f(x)}, \widehat{g(y)}) \leftarrow P_{2}(\widehat{x}, \widehat{y}, \widehat{z}$, $\left.h\left(x^{\prime}\right), i\left(y^{\prime}\right), z^{\prime}\right), P_{a}\left(\widehat{x^{\prime}}\right), P_{a}\left(\widehat{y^{\prime}}\right) .(\mathbf{1 3})$ and $P_{d}(\widehat{c(x, y)}) \leftarrow P_{3}(\widehat{x}, \widehat{y}) .(\mathbf{1 4})$. Note that the symbols c, f and g have been considered as output parameters.

No more critical pairs are detected and the procedure stops. The resulting program Prog' is composed of clauses (1) to (14). Note that the subset of descendants $d_{2}\left(f^{k}\left(h^{n}(a)\right), g^{k}\left(i^{n}(a)\right), s^{n-k}(a)\right)$ can be seen (with $p=n-k$) as $d_{2}\left(f^{k}\left(h^{k+p}(a)\right), g^{k}\left(i^{k+p}(a)\right), s^{p}(a)\right)$. The reader can check by himself that $L_{\text {Prog }^{\prime}}\left(P_{d}\right)$ is exactly $R^{*}(I)$.

[^0]: ${ }^{1}$ I.e. terms obtained by applying arbitrarily many rewrite steps on the terms of I.

[^1]: ${ }^{2}$ Clause heads are assumed to be linear.

[^2]: ${ }^{3}$ For simplicity, "tree-tuple" is sometimes omitted.

[^3]: ${ }^{4}$ Initially, synchronized languages were presented using constraint systems (sorts of grammars) [14], and later using logic programs. CS stands for "Constraint System".
 ${ }^{5}$ In this case, the S-CF program can easily be transformed into a finite tree automaton.

[^4]: ${ }^{6}$ We assume that the clause and G have distinct variables.

[^5]: ${ }^{7}$ Here, we do not use a hat to indicate output arguments because they may occur anywhere depending on P.
 ${ }^{8}$ In other words, the overlap of l on the clause head $P\left(t_{1}, \ldots, t_{n}\right)$ is done at a nonvariable position.

[^6]: ${ }^{9}$ For instance, if P_{1} is binary and arity-limit $=1$, then $P_{1}\left(t_{1}, t_{2}\right)$ should be replaced by the sequence of atoms $P_{2}\left(t_{1}\right), P_{3}\left(t_{2}\right)$. Note that the dependency between t_{1} and t_{2} is lost, which may enlarge $\operatorname{Mod}(\operatorname{Prog})$. Symbols P_{2} and P_{3} are new if it is compatible with predicate-limit. Otherwise former predicate symbols should be used instead of P_{2} and P_{3}.

[^7]: ${ }^{10}$ If it is not the case then variables are relabelled.

[^8]: ${ }^{11}$ Since \emptyset is flat, a goal having a flat output can always be reached, i.e. in some cases $G=\emptyset$.

[^9]: ${ }^{12}$ This property does not necessarily hold as soon as P_{2} is reached within (ii). We may have to consider further occurrences of P_{2} so that each required term occurs in the required argument, which will necessarily happen because there are only finitely many permutations.
 ${ }^{13}$ Without loss of generality, we can consider that the output arguments (at least two) are the first arguments of P_{2}.

