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Abstract. To check a system, some verification techniques consider a
set of terms I that represents the initial configurations of the system,
and a rewrite system R that represents the system behavior. To check
that no undesirable configuration is reached, they compute an over-
approximation of the set of descendants (successors) issued from I by
R, expressed by a tree language. Their success highly depends on the
quality of the approximation. Some techniques have been presented us-
ing regular tree languages, and more recently using non-regular languages
to get better approximations: using context-free tree languages [15] on
the one hand, using synchronized tree languages [2] on the other hand.
In this paper, we merge these two approaches to get even better approx-
imations: we compute an over-approximation of the descendants, using
synchronized-context-free tree languages expressed by logic programs.
We give several examples for which our procedure computes the descen-
dants in an exact way, whereas the former techniques compute a strict
over-approximation.

Keywords: term rewriting, tree languages, logic programming, reachability.

1 Introduction

To check systems like cryptographic protocols or Java programs, some verifica-
tion techniques consider a set of terms I that represents the initial configurations
of the system, and a rewrite system R that represents the system behavior [1,
12, 13]. To check that no undesirable configuration is reached, they compute an
over-approximation of the set of descendants1 (successors) issued from I by R,
expressed by a tree language. Let R∗(I) denote the set of descendants of I,
and consider a set Bad of undesirable terms. Thus, if a term of Bad is reached
from I, i.e. R∗(I) ∩ Bad 6= ∅, it means that the protocol or the program is
flawed. In general, it is not possible to compute R∗(I) exactly. Instead, one com-
putes an over-approximation App of R∗(I) (i.e. App ⊇ R∗(I)), and checks that
App ∩Bad = ∅, which ensures that the protocol or the program is correct.

However, I, Bad and App have often been considered as regular tree lan-
guages, recognized by finite tree automata. In the general case, R∗(I) is not

1 I.e. terms obtained by applying arbitrarily many rewrite steps on the terms of I.
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regular, even if I is. Moreover, the expressiveness of regular languages is poor.
Then the over-approximation App may not be precise enough, and we may have
App∩Bad 6= ∅ whereas R∗(I)∩Bad = ∅. In other words, the protocol is correct,
but we cannot prove it. Some work has proposed CEGAR-techniques (Counter-
Example Guided Approximation Refinement) to conclude as often as possible
[1, 3, 5]. However, in some cases, no regular over-approximation works [4].

To overcome this theoretical limit, the idea is to use more expressive lan-
guages to express the over-approximation, i.e. non-regular ones. However, to be
able to check that App ∩ Bad = ∅, we need a class of languages closed under
intersection and whose emptiness is decidable. Actually, if we assume that Bad
is regular, closure under intersection with a regular language is enough. The
class of context-free tree languages has these properties, and an approximation
technique using context-free tree languages has been proposed in [15]. On the
other hand, the class of synchronized tree languages [16] also has these prop-
erties, and an approximation technique using synchronized tree languages has
been proposed in [2]. Both classes include regular languages, but they are in-
comparable. Context-free tree languages cannot express dependencies between
different branches, except in some cases, whereas synchronized tree languages
cannot express vertical dependencies.

We want to use a more powerful class of languages that can express the
two kinds of dependencies together: the class of synchronized-context-free tree-
(tuple) languages [20, 21], which has the same properties as context-free lan-
guages and as synchronized languages, i.e. closure under union, closure under
intersection with a regular language, decidability of membership and emptiness.

In this paper, we propose a procedure that always terminates and that com-
putes an over-approximation of the descendants obtained by a linear rewrite
system, using synchronized-context-free tree-(tuple) languages expressed by logic
programs. Compared to our previous work [2], we introduce “input arguments”
in predicates, which is a major technical change that highly improves the qual-
ity of the approximation, and that requires new results and new proofs. This
work is a first step towards a verification technique offering more than regular
approximations. Some on-going work is discussed in Section 5 in order to make
this technique be an accepted verification technique.

The paper is organized as follows: classical notations and notions manipulated
throughout the paper are introduced in Section 2. Our main contribution, i.e.
computing approximations, is explained in Section 3. Finally, in Section 4 our
technique is applied on examples, in particular when R∗(I) can be expressed in
an exact way neither by a context-free language, nor by a synchronized language.
For lack of space, all proofs are in the appendix.

Related Work: The class of tree-tuples whose overlapping coding is recognized
by a tree automaton on the product alphabet [6] (called “regular tree relations”
by some authors), is strictly included in the class of rational tree relations [18].
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The latter is equivalent to the class of non-copying2 synchronized languages [19],
which is strictly included in the class of synchronized languages.

Context-free tree languages (i.e. without assuming a particular strategy for
grammar derivations) [22] are equivalent to OI (outside-in strategy) context-free
tree languages, but are incomparable with IO (inside-out strategy) context-free
tree languages [10, 11]. The IO class (and not the OI one) is strictly included in
the class of synchronized-context-free tree languages. The latter is equivalent to
the “term languages of hyperedge replacement grammars”, which are equivalent
to the tree languages definable by attribute grammars [8, 9]. However, we prefer
to use the synchronized-context-free tree languages, which use the well known
formalism of pure logic programming, for its implementation ease.

Much other work computes the descendants in an exact way using regular tree
languages (in particular the recent paper [7]). In general the set of descendants
is not regular even if the initial set is. Consequently strong restrictions over the
rewrite system are needed to get regular descendants, which are not suitable in
the framework of protocol or program verification.

2 Preliminaries

Consider a finite ranked alphabet Σ and a set of variables Var. Each symbol
f ∈ Σ has a unique arity, denoted by ar(f). The notions of first-order term,
position and substitution are defined as usual. Given σ and σ′ two substitutions,
σ ◦σ′ denotes the substitution such that for any variable x, σ ◦σ′(x) = σ(σ′(x)).
TΣ denotes the set of ground terms (without variables) over Σ. For a term t,
Var(t) is the set of variables of t, Pos(t) is the set of positions of t. For p ∈ Pos(t),
t(p) is the symbol of Σ ∪Var occurring at position p in t, and t|p is the subterm
of t at position p. The term t is linear if each variable of t occurs only once in
t. The term t[t′]p is obtained from t by replacing the subterm at position p by
t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var}, PosNonVar(t) = {p ∈ Pos(t) | t(p) 6∈
Var}. Note that if p ∈ PosNonVar(t), t|p = f(t1, . . . , tn), and i ∈ {1, . . . , n},
then p.i is the position of ti in t. For p, p′ ∈ Pos(t), p < p′ means that p occurs
in t strictly above p′. Let t, t′ be terms, t is more general than t′ (denoted t ≤ t′)
if there exists a substitution ρ s.t. ρ(t) = t′. Let σ, σ′ be substitutions, σ is more
general than σ′ (denoted σ ≤ σ′) if there exists a substitution ρ s.t. ρ ◦ σ = σ′.

A rewrite rule is an oriented pair of terms, written l→ r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite
set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The
rewrite relation →R is defined as follows: t →R t′ if there exist a position p ∈
PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ =
t[θ(r)]p. →∗R denotes the reflexive-transitive closure of→R. t′ is a descendant of
t if t→∗R t′. If E is a set of ground terms, R∗(E) denotes the set of descendants
of elements of E. The rewrite rule l → r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right)
linear. R is linear if R is both left and right linear.

2 Clause heads are assumed to be linear.



Towards more Precise Rewriting Approximations 5

In the following, we consider the framework of pure logic programming, and
the class of synchronized-context-free tree-tuple3 languages [20, 21], which is pre-
sented as an extension of the class of synchronized tree-tuple languages defined
by CS-clauses [16, 17]. Given a set Pred of predicate symbols; atoms, goals, bod-
ies and Horn-clauses are defined as usual. Note that both goals and bodies are
sequences of atoms. We will use letters G or B for sequences of atoms, and A
for atoms. Given a goal G = A1, . . . , Ak and positive integers i, j, we define
G|i = Ai and G|i.j = (Ai)|j = tj where Ai = P (t1, . . . , tn).

Definition 1. The tuple of terms (t1, . . . , tn) is flat if t1, . . . , tn are variables.
The sequence of atoms B is flat if for each atom P (t1, . . . , tn) of B, t1, . . . , tn
are variables. B is linear if each variable occurring in B (possibly at sub-term
position) occurs only once in B. Note that the empty sequence of atoms (denoted
by ∅) is flat and linear.

A Horn clause P (t1, . . . , tn)← B is:

– empty if P (t1, . . . , tn) is flat, i.e. ∀i ∈ {1, . . . , n}, ti is a variable.
– normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occurrence

of function-symbol. A program is normalized if all its clauses are normalized.

Example 1. Let x, y, z be variables. The sequence of atoms P1(x, y), P2(z) is flat,
whereas P1(x, f(y)), P2(z) is not flat. The clause P (x, y)← Q(x, y) is empty and
normalized (x, y are variables). The clause P (f(x), y) ← Q(x, y) is normalized
whereas P (f(f(x)), y)← Q(x, y) is not.

Definition 2. A logic program with modes is a logic program such that a mode-
tuple ~m ∈ {I,O}n is associated to each predicate symbol P (n is the arity of P ).
In other words, each predicate argument has mode I (Input) or O (Output).
To distinguish them, output arguments will be covered by a hat.

Notation: Let P be a predicate symbol. ArIn(P ) is the number of input ar-
guments of P , and ArOut(P ) is the number of output arguments. Let B be
a sequence of atoms (possibly containing only one atom). In(B) is the input
part of B, i.e. the tuple composed of the input arguments of B. ArIn(B) is
the arity of In(B). V arin(B) is the set of variables that appear in In(B).
Out(B), ArOut(B), and V arout(B) are defined in a similar way. We also de-
fine V ar(B) = V arin(B) ∪ V arout(B).

Example 2. Let B = P (t̂1, t̂2, t3), Q(t̂4, t5, t6). Then, Out(B) = (t1, t2, t4) and
In(B) = (t3, t5, t6).

Definition 3. Let B = A1, . . . , An be a sequence of atoms. We say that Aj �
Ak (possibly j = k) if ∃y ∈ V arin(Aj) ∩ V arout(Ak). In other words an input of
Aj depends on an output of Ak. We say that B has a loop if Aj �+ Aj for some
Aj (�+ is the transitive closure of �).

Example 3. Q(x̂, s(y)), R(ŷ, s(x)) (where x, y are variables) has a loop because
Q(x̂, s(y)) � R(ŷ, s(x)) � Q(x̂, s(y)).

3 For simplicity, “tree-tuple” is sometimes omitted.
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Definition 4. A Synchronized-Context-Free (S-CF) program Prog is a logic
program with modes, whose clauses H ← B satisfy:

- In(H).Out(B) ( . is the tuple concatenation) is a linear tuple of variables, i.e.
each tuple-component is a variable, and each variable occurs only once,

- and B does not have a loop.

A clause of an S-CF program is called S-CF clause.

Example 4. Prog = {P (x̂, y) ← P (ŝ(x), y)} is not an S-CF program because

In(H).Out(B) = (y, s(x)) is not a tuple of variables. Prog′ = {P ′(ŝ(x), y) ←
P ′(x̂, s(y))} is an S-CF program because In(H).Out(B) = (y, x) is a linear tuple
of variables, and there is no loop in the clause body.

Definition 5. Let Prog be an S-CF program. Given a predicate symbol P with-
out input arguments, the tree-(tuple) language generated by P is LProg(P ) =
{~t∈(TΣ)ArOut(P ) |P (~t)∈Mod(Prog)}, where TΣ is the set of ground terms over
the signature Σ and Mod(Prog) is the least Herbrand model of Prog. LProg(P )
is called Synchronized-Context-Free language (S-CF language).

Example 5. Let us consider the S-CF program without input arguments Prog =

{P1(ĝ(x, y))←P2(x̂, ŷ). P2(â, â)← . P2(ĉ(x, y), ̂c(x′, y′))←P2(x̂, ŷ′), P2(ŷ, x̂′).}.
The language generated by P1 is LProg(P1) = {g(t, tsym) | t ∈ T{c\2,a\0}}, where
tsym is the symmetric tree of t (for instance c(c(a, a), a) is the symmetric of
c(a, c(a, a))). This language is synchronized, but it is not context-free.

Example 6. Prog={S(ĉ(x, y))← P (x̂, ŷ, a, b).

P (f̂(x), ĝ(y), x′, y′)← P (x̂, ŷ, h(x′), i(y′)). P (x̂, ŷ, x, y)←} is an S-CF program.
The language generated by S is LProg(S) = {c(fn(hn(a)), gn(in(b))) | n ∈ IN},
which is not synchronized (there are vertical dependencies) nor context-free.

Definition 6. The S-CF clauseH←B is non-copying if the tupleOut(H).In(B)
is linear. A program is non-copying if all its clauses are non-copying.

Example 7. The clause P (d̂(x, x), y)←Q(x̂, p(y)) is copying whereas P (ĉ(x), y)←
Q(x̂, p(y)) is non-copying.

Remark 1. An S-CF program without input arguments is actually a CS-program
(composed of CS-clauses) [16], which generates a synchronized language4. A non-
copying CS-program such that every predicate symbol has only one argument
generates a regular tree language5. Conversely, every regular tree language can
be generated by a non-copying CS-program.

Given an S-CF program, we focus on two kinds of derivations.

Definition 7. Given an S-CF program Prog and a sequence of atoms G,

4 Initially, synchronized languages were presented using constraint systems (sorts of
grammars) [14], and later using logic programs. CS stands for “Constraint System”.

5 In this case, the S-CF program can easily be transformed into a finite tree automaton.
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– G derives into G′ by a resolution step if there exists a clause6 H ← B in
Prog and an atom A ∈ G such that A and H are unifiable by the most
general unifier σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is
written G;σ G

′.
We consider the transitive closure ;+ and the reflexive-transitive closure
;∗ of ;. If G1 ;σ1

G2 and G2 ;σ2
G3, we write G1 ;∗σ2◦σ1

G3.
– G rewrites into G′ (possibly in several steps) if G ;∗σ G′ s.t. σ does not

instantiate the variables of G. It is written G→∗σ G′.

Example 8. Let Prog = {P (x̂1, ĝ(x2)) ← P ′(x̂1, x̂2). P (f̂(x1), x̂2) ← P ′′(x̂1,
x̂2).}, and consider G = P (f(x), y). Thus, P (f(x), y)) ;σ1

P ′(f(x), x2) with
σ1 = [x1/f(x), y/g(x2)] and P (f(x), y))→σ2 P

′′(x, y) with σ2 = [x1/x, x2/y].

In the remainder of the paper, given an S-CF program Prog and two se-
quences of atoms G1 and G2, G1 ;∗Prog G2 (resp. G1 →∗Prog G2) also denotes
that G2 can be derived (resp. rewritten) from G1 using clauses of Prog. Note
that for any atom A, if A→ B then A; B. On the other hand, A;σ B implies
σ(A)→ B. Consequently, if A is ground, A; B implies A→ B.

It is well known that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈Mod(Prog) iff A;∗Prog ∅.

3 Computing Descendants

To make the understanding easier, we first give the completion algorithm in Def-
inition 8. Given a normalized S-CF program Prog and a linear rewrite system R,
we propose an algorithm to compute a normalized S-CF program Prog′ such that
R∗(Mod(Prog)) ⊆ Mod(Prog′), and consequently R∗(LProg(P )) ⊆ LProg′(P )
for each predicate symbol P . Some notions will be explained later.

Definition 8 (comp). Let arity-limit and predicate-limit be positive integers. Let
R be a linear rewrite system, and Prog be a finite, normalized and non-copying
S-CF program strongly coherent with R. The completion process is defined by:
Function compR(Prog)

Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

Let us explain this algorithm.
The notion of critical pair is at the heart of the technique. Given an S-CF

program Prog, a predicate symbol P and a rewrite rule l → r, a critical pair,
explained in details in Section 3.1, is a way to detect a possible rewriting by l→ r
for a term t in L(P ). A convergent critical pair means that the rewrite step is

6 We assume that the clause and G have distinct variables.
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already handled i.e. if t →l→r s then s ∈ L(P ). Consequently, the language of
a normalized CS-program involving only convergent critical pairs is closed by
rewriting.

To summarize, a non-convergent critical pair gives rise to an S-CF clause.
Adding the resulting S-CF clause to the current S-CF program makes the critical
pair convergent. But, let us emphasize on the main problems arising from Defi-
nition 8, i.e. the computation may not terminate and the resulting S-CF clause
may not be normalized. Concerning the non-termination, there are mainly two
reasons. Given a normalized S-CF program Prog, 1) the number of critical pairs
may be infinite and 2) even if the number of critical pairs is finite, adding the
critical pairs to Prog may create new non-convergent critical pairs, and so on.

Actually, as in [2], there is a function called removeCycles whose goal is to
get finitely many critical pairs from a given finite S-CF program. For lack of
space, many details on this function are given in Appendix E. Basically, given
an S-CF program Prog having infinitely many critical pairs, removeCycles(Prog)
is another S-CF program that has finitely many critical pairs, and such that for
any predicate symbol P , LProg(P ) ⊆ LremoveCycles(Prog)(P ). The normalization
process presented in Section 3.2 not only preserves the normalized nature of the
computed S-CF programs but also allows us to control the creation of new non-
convergent critical pairs. Finally, in Section 3.3, our main contribution, i.e. the
computation of an over-approximating S-CF program, is fully described.

3.1 Critical pairs

The notion of critical pair is the heart of our technique. Indeed, it allows us
to add S-CF clauses into the current S-CF program in order to cover rewriting
steps.

Definition 9. Let Prog be a non-copying S-CF program and l → r be a left-
linear rewrite rule. Let x1, . . . , xn be distinct variables such that {x1, . . . , xn} ∩
V ar(l) = ∅. If there are P and k s.t. the kth argument of P is an output, and
P (x1, . . . , xk−1, l, xk+1, . . . , xn) ;+

θ G where7

1. resolution steps are applied only on atoms whose output is not flat,

2. Out(G) is flat and

3. the clause P (t1, . . . , tn)← B used in the first step of this derivation satis-
fies tk is not a variable8

then the clause θ(P (x1, . . . , xk−1, r, xk+1, . . . , xn)) ← G is called critical pair.
Moreover, if θ does not instantiate the variables of In(P (x1, . . . , xk−1, l, xk+1, . . . ,
xn)) then the critical pair is said strict.

7 Here, we do not use a hat to indicate output arguments because they may occur
anywhere depending on P .

8 In other words, the overlap of l on the clause head P (t1, . . . , tn) is done at a non-
variable position.
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Example 9. Let Prog be the S-CF program defined by:

Prog = {P (x̂)← Q(x̂, a). Q(f̂(x), y)← Q(x̂, g(y)). Q(x̂, x)← .} and consider
the rewrite system: R = {f(x)→ x}. Note that L(P ) = {fn(gn(a)) | n ∈ IN}.
We have Q(f̂(x), y) ;Id Q(x̂, g(y)) where Id denotes the substitution that leaves
every variable unchanged. Since Out(Q(x̂, g(y))) is flat, this generates the strict
critical pair Q(x̂, y)← Q(x̂, g(y)).

Lemma 1. A strict critical pair is an S-CF clause. In addition, if l → r is
right-linear, a strict critical pair is a non-copying S-CF clause.

Definition 10. A critical pair H ← B is said convergent if H →∗Prog B.

The critical pair of Example 9 is not convergent.

Let us recall that the completion procedure is based on adding the non-
convergent critical pairs into the program. In order to preserve the nature of the
S-CF program, the computed non-convergent critical pairs are expected to be
strict. So we define a sufficient condition on R and Prog called strong coherence.

Definition 11. Let R be a rewrite system. We consider the smallest set of
consuming symbols, recursively defined by: f ∈ Σ is consuming if there exists a
rewrite rule f(t1, . . . , tn)→ r in R s.t. some ti is not a variable, or r contains at
least one consuming symbol.
The S-CF program Prog is strongly coherent with R if 1) for all l→ r ∈ R, the
top-symbol of l does not occur in input arguments of Prog and 2) no consuming
symbol occurs in clause-heads having input arguments.

In R = {f(x) → g(x), g(s(x)) → h(x)}, g is consuming and so is f . Thus

Prog={P (f̂(x), x)← .} is not strongly coherent withR. Note that a CS-program
(no input arguments) is strongly coherent with any rewrite system.

Lemma 2. If Prog is a normalized S-CF program strongly coherent with R,
then every critical pair is strict.

So, we come to our main result that ensures to get the rewriting closure when
every computable critical pair is convergent.

Theorem 2. Let R be a linear rewrite system, and Prog be a non-copying nor-
malized S-CF program strongly coherent with R. If all strict critical pairs are
convergent, then for every predicate symbol P without input arguments, L(P ) is

closed under rewriting by R, i.e. (~t ∈ L(P ) ∧ ~t→∗R ~t′) =⇒ ~t′ ∈ L(P ).

3.2 Normalizing critical pairs – normProg

If a critical pair is not convergent, we add it into Prog, and the critical pair be-
comes convergent. However, in the general case, a critical pair is not normalized,
whereas all clauses in Prog should be normalized. In the case of CS-clauses (i.e.
without input arguments), a procedure that transforms a non-normalized clause
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into normalized ones has been presented [2]. For example, P ( ̂f(g(x)), b̂)← Q(x̂)

is normalized into {P (f̂(x1), b̂) ← P1(x̂1). P1(ĝ(x1)) ← Q(x̂1).} (P1 is a new
predicate symbol). Since only output arguments should be normalized, this pro-
cedure still works even if there are also input arguments. As new predicate
symbols are introduced, possibly with bigger arities, the procedure may not
terminate. To make it terminate in every case, two positive integers are used:
predicate-limit and arity-limit. If the number of predicate symbols having the
same arity as P1 (including P1) exceeds predicate-limit, an existing predicate
symbol (for example Q) must be used instead of the new predicate P1. This may
enlarge Mod(Prog) in general and may lead to a strict over-approximation. If
the arity of P1 exceeds arity-limit, P1 must be replaced in the clause body by
several predicate symbols9 whose arities are less than or equal to arity-limit.
This may also enlarge Mod(Prog). See [2] for more details.

In other words normProg(H ← B) builds a set of normalized S-CF clauses N
such that Mod(Prog ∪ {H ← B}) ⊆Mod(Prog ∪N).

However, when starting from a CS-program (i.e. without input arguments),
it could be interesting to normalize by introducing input arguments, in order to
profit from the bigger expressiveness of S-CF programs, and consequently to get
a better approximation of the set of descendants, or even an exact computation,
like in Examples 10 and 11 presented in Section 4. The quality of the approxi-
mation depends on the way the normalization is achieved. Some heuristics con-
cerning the choice of functional symbols occurring as inputs will be developed in
further work. Anyway, these heuristics will have to preserve the strong coherence
property.

3.3 Completion

At the very beginning of Section 3, we have presented in Definition 8 the com-
pletion algorithm i.e. compR. In Sections 3.1 and 3.2, we have described how to
detect non-convergent critical pairs and how to convert them into normalized
clauses using normProg.

Theorem 3 illustrates that our technique leads to a finite S-CF program
whose language over-approximates the descendants obtained by a linear rewrite
system R.

Theorem 3. Function comp always terminates, and all critical pairs are con-
vergent in compR(Prog). Moreover, for each predicate symbol P without input
arguments, R∗(LProg(P )) ⊆ LcompR(Prog)(P ).

9 For instance, if P1 is binary and arity-limit = 1, then P1(t1, t2) should be replaced by
the sequence of atoms P2(t1), P3(t2). Note that the dependency between t1 and t2 is
lost, which may enlarge Mod(Prog). Symbols P2 and P3 are new if it is compatible
with predicate-limit. Otherwise former predicate symbols should be used instead of
P2 and P3.
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4 Examples

In this section, our technique is applied on several examples. I is the initial
set of terms and R is the rewrite system. Initially, we define an S-CF program
Prog that generates I and that satisfies the assumptions of Definition 8. For lack
of space, the examples should be as short as possible. To make the procedure
terminate shortly, we suppose that predicate-limit=1, which means that for all
i, there is at most one predicate symbol having i arguments, except for i = 1 we
allow two predicate symbols having one argument.

When the following example is dealt with synchronized languages, i.e. with
CS-programs [2, Example 42], we get a strict over-approximation of the de-
scendants. Now, thanks to the bigger expressive power of S-CF programs, we
compute the descendants in an exact way.

Example 10. Let I = {f(a, a)} and R = {f(x, y) → u(f(v(x), w(y)))}. Intu-
itively, the exact set of descendants is R∗(I) = {un(f(vn(a), wn(a))) | n ∈ N}
where un means that u occurs n times. We define Prog = {Pf (f̂(x, y)) ←
Pa(x̂), Pa(ŷ)., Pa(â)← .}. Note that LProg(Pf ) = I. The run of the completion
is given in Fig 1. The reader can refer to Appendix G for a detailed explana-
tion. In Fig 1, the left-most column reports the detected non-convergent critical
pairs and the right-most column describes how they are normalized. Note that
for the resulting program Prog, i.e. clauses appearing in the right-most column,
LProg(Pf ) = R∗(I) indeed.

Pf (ẑ)← P1(ẑ, x, y), Pa(x̂), Pa(ŷ).

P1(û(z), x, y)← P1(ẑ, v(x), w(y)).

P1( ̂f(x, y), x, y)← .

Pf ( ̂u(f(v(x), w(y))))← Pa(x̂), Pa(ŷ).

Pf ( ̂f(x, y))← Pa(x̂), Pa(ŷ).

Pa(â)← .

Starting S-CF program

Detected non-convergent critical pairs New clauses obtained by normProg

∅

Fig. 1. Run of compR on Example 10

The previous example could probably be dealt in an exact way using the
technique of [15] as well, since R∗(I) is a context-free language. It is not the case
for the following example, whose language of descendants R∗(I) is not context-
free (and not synchronized). It can be handled by S-CF programs in an exact
way thanks to their bigger expressive power.
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Example 11. Let I = {d1(a, a, a)} and

R =

{
d1(x, y, z)

1→ d1(h(x), i(y), s(z)), d1(x, y, z)
2→ d2(x, y, z)

d2(x, y, s(z))
3→ d2(f(x), g(y), z), d2(x, y, a)

4→ c(x, y)

}

R∗(I) is composed of all terms appearing in the following derivation:

d1(a, a, a)
1→n d1(hn(a), in(a), sn(a))

2→ d2(hn(a), in(a), sn(a))
3→k d2(fk(hn(a)), gk(in(a)), sn−k(a))

4→ c(fn(hn(a)), gn(in(a))) .
Note that the last rewrite step by rule 4 is possible only when k = n. The run
of the completion on this example is given in Fig 2. Black arrows means that
the non-convergent critical pair is directly added to Prog since it is already
normalized. The reader can find a full explanation of this example in Appendix
H.

Pd( ̂d1(x, y, z))← Pa(x̂), Pa(ŷ), Pa(ẑ).
Pa(â)← .

Pd( ̂d1(h(x), i(y), s(z)))← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd( ̂d1(x, y, z))← P1(x̂, ŷ, ẑ).

P1(ĥ(x), î(y), ŝ(z))← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd( ̂d2(x, y, z))← Pa(x̂), Pa(ŷ), Pa(ẑ).

Pd( ̂d1(h(x), i(y), s(z)))← P1(x̂, ŷ, ẑ) P1(ĥ(x), î(y), ŝ(z))← P1(x̂, ŷ, ẑ).

Pd( ̂d2(x, y, z))← P1(x̂, ŷ, ẑ).

Pd( ̂c(x, y))← Pa(x̂), Pa(ŷ).

Pd( ̂d2(f(h(x)), g(i(y)), z))← Pa(x̂), Pa(ŷ), Pa(ẑ)
Pd( ̂d2(x, y, z))← P2(x̂, ŷ, ẑ, x

′, y′, z′), Pa(x̂′), Pa(ŷ′), Pa(ẑ′).

P2(f̂(x), ĝ(y), ẑ, x
′, y′, z′)← P2( x̂, ŷ, ẑ, h(x′), i(y′), z′)

P2(x̂, ŷ, ẑ, x, y, z)← .

P2(f̂(x), ĝ(y), ẑ, x
′, y′, z′)← P2(x̂, ŷ, ẑ1, h(x

′), i(y′), z′1),

Pd( ̂d2(f(h(x)), g(i(y)), z))← P1(x̂, ŷ, ẑ)
Pd( ̂d2(x, y, z))←P2(x̂, ŷ, ẑ, x

′, y′, z′),

Pd( ̂c(f(x), g(y)))← P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

P3(f̂(x), ĝ(y))←P2(x̂, ŷ, ẑ, h(x
′), i(y′), z′),

Pd( ̂c(x, y))← P3(x̂, ŷ).

P2(x̂1, ŷ1, ẑ, h(x
′
1), i(y

′
1), z

′)

A cycle is detected – removeCycles replaces the

blue clause by the red one.

Detected non-convergent critical pairs New clauses obtained by normProg

Starting S-CF program

Pa(x̂′), Pa(ŷ′).

P1(x̂′, ŷ′, ẑ′).

Pa(x̂′), Pa(ŷ′).

Fig. 2. Run of compR on Example 11

Note that the subset of descendants d2(fk(hn(a)), gk(in(a)), sn−k(a)) can
be seen (with p = n − k) as d2(fk(hk+p(a)), gk(ik+p(a )), sp(a)). Let Prog′ be
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the S-CF program composed of all the clauses except the blue one occurring
in the right-most column in Fig 2. Thus, the reader can check by himself that
LProg′(Pd) is exactly R∗(I).

5 Further Work

Computing approximations more precise than regular approximations is a first
step towards a verification technique. However, there are at least two steps before
claiming this technique as a verification technique: 1) automatically handling the
choices done during the normalization process and 2) extending our technique
to any rewrite system. The quality of the approximation is closely related to
those choices. On one hand, it depends on the choice of the predicate symbol
to be reused when predicate-limit is reached. On the other hand, the choice of
generating function-symbols as output or as input is also crucial. According to
the verification context, some automated heuristics will have to be designed in
order to obtain well-customized approximations.

On-going work tends to show that the linear restriction concerning the rewrite
system can be tackled. A non right-linear rewrite system makes the computed
S-CF program copying. Consequently, Theorem 2 does not hold anymore. To get
rid of the right-linearity restriction, we are studying the transformation of a copy-
ing S-CF clause into non-copying ones that will generate an over-approximation.
On the other hand, to get rid of the left-linearity restriction, we are studying a
technique based on the transformation of any Horn clause into CS-clauses [16].
However, the method of [16] does not always terminate. We want to ensure
termination thanks to an additional over-approximation.
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Appendix

A Intermediary Technical Results

The following technical lemmas are necessary for proving Lemma 1.

Lemma 3. Let t and t′ be two terms such that V ar(t) ∩ V ar(t′) = ∅. Suppose
that t′ is linear. Let σ be the most general unifier of t and t′. Then, one has:
∀x, y : (x, y ∈ V ar(t) ∧ x 6= y) ⇒ V ar(σ(x)) ∩ V ar(σ(y)) = ∅ and ∀x : x ∈
V ar(t)⇒ σ(x) is linear.

Proof. By Definition, σ(t) = σ(t′). Let us focus on t. Let p1, . . . , pn be positions
of variables occurring in t. For any pi,

– if σ(t)|pi is a variable then σ(t|pi) is linear;
– Suppose that σ(t)|pi is not a variable. Since σ is the most general unifier,

there exists pj such that σ(t|pi) = t′|pj . In particular pj may be different
from pi if the variable occurring at position pi in t occurs more than once in
t. The term t′ being linear, so is σ(t|pi).
For any pi, pj such that t|pi 6= t|pj , one has to study the different cases

presented below:

– σ(t)|pi and σ(t)|pj are variables: Necessarily, σ(t)|pi 6= σ(t)|p′i because t′ is
linear and t|pi 6= t|pj . Consequently, V ar(σ(t|pi)) ∩ V ar(σ(t|pi)) = ∅.

– σ(t)|pi is a variable and σ(t)|pj is not: Consequently, there exists pk such
that σ(t)|pj = t′|pk . Indeed, if the variable t|pj occurs only once in t then
pk = pj . Otherwise, pk is a position such that t|pj = t|pk . This position exists
since the most general unifier exists.
• σ(t|pi) ∈ V ar(t): necessarily, V ar(σ(t|pi)) ∩ V ar(σ(t|pj )) = ∅ since
V ar(σ(t|pj ))=V ar(t′|pk)⊆V ar(t′)and by hypothesis V ar(t)∩V ar(t′)=∅

• σ(t|pi) ∈ V ar(t′): As for t|pj , since σ is the most general unifier, there
exists pl a position of p1, . . . , pn such that t|pl = t|pi and σ(t|pi) = t′|pl .
Moreover, t|pi 6= t|pj . Thus, pl 6= pk. Since t′ is linear, V ar(t′|pl) ∩
V ar(t′|pk) = ∅. Finally, one has that V ar(σ(t|pi)) ∩ V ar(σ(t|pj )) = ∅.

– σ(t)|pj is a variable and σ(t)|pi is not: similar to the previous case.
– σ(t|pi) and σ(t|pj ) are not variables: Once again, since σ is the mgu of t and t′,

there exists pk and pl such that t|pk = t|pi , t|pl = t|pj , pl 6= pk, σ(t|pi) = t′|pk
and σ(t|pj ) = t′|pl . The term t′ being linear, σ(t|pi) ∩ σ(t|pj ) = ∅.

Concluding the proof.

For the next lemmas, we introduce two notions allowing the extraction of
variables occurring once in a sequence of atoms.
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Definition 12. Let G be a sequence of atoms. V arinLin(G) is a tuple of variables
occurring in In(G) and not in Out(G), and V aroutLin(G) is a tuple of variable
occurring in Out(G) and not in In(G).

Example 12. Let G be a sequence of atoms s.t. G = P ( ̂g(f(x′, z′)), y′), Q(v̂′,
g(z′)). Consequently, V arinLin(G) = (y′) and V aroutLin(G) = (x′, v′).

Note that for a matter of simplicity, we denote by x ∈ V arinLin(G) (resp.
x ∈ V aroutLin(G)) that x occurs in the tuple V arinLin(G) (resp. V aroutLin( G)). The
following lemma focuses on a property of a sequence of atoms obtained after a
resolution step.

Lemma 4. Let Prog be a non-copying S-CF program, and G be a sequence
of atoms such that Out(G) is linear, In(G) is linear and G does not contain
loops. We assume10 that variables occurring in Prog are different from those
occurring in G. If G ;σ G

′, then G′ is loop free, σ(V arinLin(G)).Out(G′) and
σ(V aroutLin(G)).In(G′) are both linear.

Example 13. Let Prog = {P (ĝ(x), y) ← Q(x̂, f(y))} and G = P ( ̂g(f(x′)), y′).

Then G ;σ G
′ with σ = (x/f(x′), y/y′) and G′ = Q(f̂(x′), f(y′)). Note that

σ(V arinLin(G)).Out(G′) = (y′, f(x′)) is linear.

Proof. First, we show that σ(V arinLin(G)). Out(G′) and σ(V aroutLin(G)).In(G′)
are linear. Thus, in a second time, we show that G′ is loop free.

Suppose that G ;σ G′. Thus, there exist an atom Ax in G = A1, . . . ,
Ax, . . . , An, a S-CF-clause H ← B ∈ Prog and the mgu σ such that σ(H) =
σ(Ax) and G′ = σ(G)[σ(Ax)← σ(B)].

Let V arinLin(G) = x1, . . . , xk, . . . , xk+n′ , . . . , xm built as follows:

– x1, . . . , xk−1 are the variables occurring in the atoms A1, . . . , Ax−1;
– xk, . . . , xk+n′ are the variables occurring in Ax;
– xk+n′+1, . . . , xm are the variable occurring the atoms Ax+1, . . . , An.

Since In(G) and Out(G) are both linear and σ is the mgu of Ax and H,
one has σ(V arinLin(G)) = x1, . . . , xk+1, σ(xk), . . . , σ(xk+n′), xk+n′+1, . . . xm. Note
that the linearity of In(G) involves the linearity of V arinLin(G). Moreover, one can
deduce that σ(V arinLin(G)) is linear iff the tuple σ(xk), . . . , σ( xk+n′) is linear.

By hypothesis, Out(H).In(B) and Out(B).In(H) are both linear.
So, a variable occurring in V ar(H) ∩ V ar(B) is either

– a variable that is in Out(H) and Out(B) or
– a variable that is in In(H) and In(B).

A variable occurring in Out(H) and in In(H) does not occur in B. Sym-
metrically, a variable occurring in Out(B) and in In(B) does not occur in H.
Moreover, a variable cannot occur twice in either Out(H) or In(H).

Let us focus on Ax. Ax is linear since it does not contain loop by hypothesis.
Let us study the possible forms of H given in Fig. 3.
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Input Output OutputInput

y y y

(a) Linear (b) non linear

Fig. 3. Possible forms of H

Each variable y occurring in B is:

– either a new variable or
– a variable occurring once in H and preserving its nature (input or output).

The relation ;Prog ensures the nature stability of variables i.e.

V ar(Out(σ(B))) ∩ V ar(In(σ(H))) = ∅ and (1)

V ar(In(σ(B))) ∩ V ar(Out(σ(H))) = ∅ (2)

Moreover, a consequence of Lemma 3 is that Out(σ(B)) and In(σ(B)) are both
linear.

Let us study the two possible cases:

(a) since the variables of H and the variables of G are supposed to be disjointed
and V arinLin(G) is linear, σ(V arinLin(G)) = x1, . . . , xk+1, σ(xk), . . . , σ(xk+n′),
xk+n′+1, . . . , xm is also linear. Moreover, considering H as linear and (1) and
(2), a consequence is that

⋃

xi,i∈{k,...,k+n′}
V ar(σ(xi)) ⊆ {xk, . . . , xk+n′} ∪ V arin(Ax).

One can also deduce that V arout(G′) ⊆ V arout(G) ∪ (V arout(B)). Conse-
quently, V arout(G′)∩V ar(σ(V arinLin(G))) = ∅ and the tuple σ(V arinLin(G)).Out(G′)
is linear iff Out(G′) is linear.

(b) A variable can occur at most twice in H but an occurrence of such a
variable is necessarily an input variable and the other an output variable.
Consequently the unification between Ax and H leads to a variable α of
σ(V arinLin(G)) occurring twice in σ(H). But according to the form of H,
these two occurrences of α do not occur in σ(V arinLin(G)) since one of the
two occurrences is necessarily at an output position. So, once again, the
tuple σ(V arinLin(G)) = x1, . . . , xk+1, σ(xk), . . . , σ( xk+n′), xk+n′+1, . . . , xm is
linear. Moreover, Prog being a non-copying S-CF program, for any variable
xi, with i = k, . . . k + n′,

10 If it is not the case then variables are relabelled.
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• if xi ∈ V ar(σ(x)) with x a variable occurring twice in H then V ar(σ(xi))
∩V arout(G′) = ∅;

• if there exists z ∈ V arout(Ax) such that z ∈ V ar(σ(xi)) and z ∈
V ar(σ(x)) with x a variable occurring twice in H then V ar(σ(xi)) ∩
V arout(G′) = ∅;

• if there exists z ∈ V arout(Ax) such that xi ∈ V ar(σ(z)) and z ∈
V ar(σ(x)) with x a variable occurring twice in H then V ar(σ(xi)) ∩
V arout(G′) = ∅;

• if there exists x ∈ V arin(H) such that x /∈ V arout(H) then V ar(σ(xi)) ⊆
{xk, . . . , xk+n′} ∪ V arin(Ax). Thus, V ar(σ(xi)) ∩ V arout(G′) = ∅.

Consequently, σ(V arinLin(G)).Out(G′) is linear iff Out(G′) is linear.

Let us now study the linearity of Out(G′). First, let us focus on the case
Out(σ(G − Ax)) where G − Ax is the sequence of atoms G for which the atom
Ax has been removed. Note that σ(G−Ax) = G′ − σ(B).

Suppose that Out(G−Ax) is not linear. So there exist two distinct variables x
and y of G such that V ar(σ(x))∩V ar(σ(y)). Since these variables are concerned
by the mgu σ, they are also variables of Ax at input positions as illustrated
in Fig. 4. Since these variables are distinct and share the same variable by the
application of σ, then there exist two subterms (red and green triangles in Fig. 4)
at input positions in H sharing the same variable α. That is impossible since, by
definition, for each H ← B ∈ Prog, one has In(H).Out(B) and Out(H).In(B)
both linear.

AkAi Aj

x x y y

Input Input InputOutput OutputOutput

Input Output

α α

H

G

Fig. 4. G−Ax

So, the last possible case for breaking the linearity of Out(G′) is that there
exist two distinct variables x and y such that x occurs in Out(B), y occurs
in Out(G − Ax) and V ar(σ(x)) ∩ V ar(σ(y)) 6= ∅. A variable α of V ar(σ(x)) ∩
V ar(σ(y)) is necessarily a variable of H. Since a copy of α is done in the variable
y and y necessarily occurs in Ax at an input position, there is a contradiction.



Towards more Precise Rewriting Approximations 19

Indeed, it means that the variable α must occur both in Out(H) and In(H) but
also in Out(B). Thus, H ← B is not a non-copying S-CF clause. Consequently,
Out(G′) is linear.

To conclude, σ(V arinLin(G)).Out(G′) is linear. Note that showing that σ(
V aroutLin(G)).In(G′) is linear is very close.

The last remaining point to show is that G′ does not contain any loops.
By construction, G′ = σ(G)[σ(Ax)← σ(B)]. There are three cases to study:

– Suppose there exists a loop occurring in G′−σ(B): So, let us construct G′−
σ(B). By definition,G′−σ(B) = σ(A1), . . . σ(Ax−1), σ(Ax+1), . . . σ(Am). Let
us reason on the sequence of atoms G where G = Ai, Ax, Aj . Note that it
can be easily generalized to a sequence of atoms of any size, but for a matter
of simplicity, we focus on a significant sequence composed of three atoms. In
that case, G′ − σ(B) = σ(Ai), σ(Aj). If there exist a loop in G′ − σ(B) but
not in G then there are two possibilities (actually three but two of them are
exactly symmetric):
• Ai 6� Aj and Aj 6� Ai: Consequently, σ has generated the loop. So,

one can deduce that there exist two variables α and β such that α ∈
V arin(σ(Ai)) ∩ V arout(σ(Aj)) and β ∈ V arout(σ(Ai)) ∩ V arin(σ(Aj)).
Thus, there exist y ∈ V arout(Ai), y

′ ∈ V arin(Ai), z ∈ V arout(Aj)
and z′ ∈ V arin(Aj) such that α ∈ V ar(σ(y′)) ∩ V ar(σ(z)) and β ∈
V ar(σ(y))∩ V ar(σ(z′)). Since those four variables are concerned by the
mgu, one can deduce that they also occur in Ax. More precisely, ac-
cording to the linearity of In(G) and Out(G), y′ ∈ V arout(Ax), y ∈
V arin(Ax), z ∈ V arin(Ax) and z′ ∈ V arout(Ax). In that case, Ai � Ax
and Ax � Ai because y′ ∈ V arout(Ax)∩V arin(Ai) and y ∈ V arout(Ai)∩
V arin(Ax). Consequently, a loop occurs in G. Contradiction.

• Ai � Aj and Aj 6� Ai: Consequently, σ has generated the loop. Since
Ai � Aj , then there exists a variable y such that y ∈ V arin(Ai) ∩
V arout(Aj). Moreover, if there exists a loop in G′−σ(B) then there exists
a variable α such that α ∈ V arout(σ(Ai)) ∩ V arin(σ(Aj)). Thus, there
exist two variables y′ and z′ with y′ ∈ V arout(Ai) and z′ ∈ V arin(Aj)
such that α ∈ V ar(σ(y′))∩V ar(σ( z′)). Since those two variables are con-
cerned by the mgu, one can deduce that they also occur in Ax. More pre-
cisely, according to the linearity of In(G) and Out(G), y′ ∈ V arin(Ax)
and z′ ∈ V arout(Ax). In that case, one has Ax � Ai and Aj � Ax be-
cause y′ ∈ V arin(Ax) ∩ V arout(Ai) and z′ ∈ V arout(Ax) ∩ V arin(Aj).
Moreover, by hypothesis, Ai � Aj . Consequently, a loop occurs in G
because Aj � Ax � Ai � Ax. Contradiction.

– A loop cannot occur in σ(B): This is a direct consequence of Lemma 3.
Indeed, σ is the mgu of Ax which is linear and H. B is constructed from
the variables occurring once in H and new variables. Moreover, In(B) and
Out(B) are linear and the only variables allowed to appear in both In(B)
and Out(B) are necessarily new and then not instantiated by σ. To create a
loop in these conditions would require that two different variables α and β
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instantiated by σ would share the same variable i.e. V ar(σ(α))∩V ar(σ(β)) 6=
∅. Contradicting Lemma 3.

– Suppose that a loop occurs in G′ but neither in G′ − σ(B) nor in σ(B):
Let G be the sequence of atoms such that G = Ai, Ax. In that case, G′ =
σ(Ai), σ(B) with σ the mgu of Ax and H. One can extend the schema to any
kind of sequence of atoms satisfying the hypothesis of this lemma without
loss of generality. We consider B as follows: B = B1, . . . , Bk. If there exists a
loop in G′ but neither in G′−σ(B) nor in σ(B) then there exist Bk1 , . . . , Bkn
atoms occurring in B such that σ(Ai) � σ(Bk1) � . . . � σ(Bkn) � σ(Ai).
So, one can deduce that there exists two variables α and β such that α ∈
V arin(σ(Ai)) ∩ V arout(σ(Bk1)) and β ∈ V arout(σ(Ai)) ∩ V arout(σ(Bkn))).
Consequently, there exists two variables y, z such that y ∈ V arin(Ai), z ∈
V arout(Ai), α ∈ V ar(σ(y)) and β ∈ V ar(σ(z)). Both variables also occur
in Ax. Suppose that y does not occur in Ax. Since σ is the mgu of Ax and
H and y not in V ar(Ax), σ does not instantiate y. Consequently, α = y.
However, V ar(σ(B)) ⊆ V ar(H) ∪ V ar(Ax) ∪ V ar(B). Moreover, the sets
of variables occurring in Prog and in G are supposed to be disjointed. So,
y cannot occur in σ(B) and then the loop in G′ does not exist. Thus, y
occurs in Ax as well as z. Furthermore, since In(G) and Out(G) are linear,
y ∈ V arout(Ax) and z ∈ V arin(Ax). Consequently, G contains a cycle.
Contradicting the hypothesis.
To conclude, G′ does not contain any loop.

Lemma 4 can be generalized to several steps.

Lemma 5. The assumptions are those of Lemma 4. If G ;∗σ G′, then G′ is
loop free, σ(V arinLin(G)).Out(G′) and σ(V aroutLin(G)).In(G′) are both linear.

Proof. Let G ;∗σ G′ be rewritten as follows: G0 ;σ1
G1 . . . ;σk

Gk with
G0 = G, G′ = Gk and σ = σk ◦ . . . ◦ σ1. Let Pk be the induction hypothesis
defined such that: If G0 ;∗σ Gk then

– Gk does not contain any loop,
– σ(V arinLin(G0)).Out(Gk) is linear and
– σ(V aroutLin(G0)).In(Gk) is linear.

Let us proceed by induction.

– P0 is trivially true. Indeed, In(G0) and Out(G0) are linear. Moreover, for any
x ∈ V arinLin(G0) (resp. x ∈ V aroutLin(G0)), one has x /∈ V ar(Out(G0)) (resp.
x /∈ V ar(In(G0))). Thus, V arinLin(G0).Out(G0) is linear (resp. V aroutLin(G0).In(G0)).

– Suppose that Pk is true and Gk ;σk+1
Gk+1. Since one has Gk ;σk+1

Gk+1,
there exist H ← B ∈ Prog and an atom Ax occurring in Gksuch that σk+1

is the mgu of Ax and H, and Gk+1 = σk+1(Gk)[σk+1(H) ← σk+1(B)]. By
hypothesis, one has Out(Gk) and In(Gk) linear. Consequently, Lemma 4 can
be applied and one obtains that
• σ(V arinLin(Gk)).Out(Gk+1) is linear,
• σ(V aroutLin(Gk).In(Gk+1) is linear and



Towards more Precise Rewriting Approximations 21

• Gk+1 does not contain any loop.

Moreover, for Prog a non-copying S-CF program, if Gi ;σi+1
Gi+1 then

one has: For any variable x, y, if x ∈ V arinLin(Gi) and y ∈ V ar(σi+1(x))
then y ∈ V arinLin(Gi+1) or y /∈ V ar(Gi+1). So, one can conclude that given
σk ◦ . . . ◦ σ1(V arinLin(G0)), for any variable x ∈ V arinLin(G0), for any y ∈
V ar(σk ◦ . . . ◦ σ1(x)), either y ∈ V arinLin(Gk) or y /∈ V ar(Gk).

Let us study the variables of
⋃
y∈V arinLin(G0)

(V ar(σk ◦ . . . ◦ σ1(y)).

• For any variable x such that x ∈ ⋃
y∈V arinLin(G0)

(V ar(σk ◦ . . . ◦ σ1(y))) \
V ar(Gk), x /∈ V ar(Gk+1). Indeed, an already-used variable cannot be
reused for relabelling variables of Prog while the reduction process.
Moreover such variables are not instantiated by σk+1 since the mgu σk+1

of Ax and H only concerns variables of V ar(H) ∪ V ar(Ax). So, for any
variable y in V ar(σk ◦ . . . ◦ σ1(y)) \ V ar(Gk), one has σk+1(y) = y and
y /∈ V ar(Gk+1). Consequently, for any variable y in V ar(σk+1 ◦σk ◦ . . .◦
σ1(y))) \ V ar(Gk), y /∈ V ar(Gk+1).

• For any variable x such that x ∈ ⋃
y∈V arinLin(G0)

(V ar(σk ◦ . . . ◦ σ1(y))) ∩
V ar(Gk), one can deduce that x ∈ V arinLin(Gk). Since σk+1(V arinLin(Gk)).
Out(Gk+1) is linear, one can deduce that for any y ∈ ⋃

y∈V arinLin(G0)
(V ar(

σk◦. . .◦σ1(y)))∩V ar(Gk), V ar(σk+1◦σk◦. . .◦σ1(y))∩V ar(Out(Gk+1)) =
∅.

So, one has σk+1 ◦ σk ◦ . . . ◦ σ1(V arinLin(Gk)).Out(Gk+1) is linear. The proof
of σ(V aroutLin(Gk).In(Gk+1) is in some sense symmetric. To conclude, consid-
ering the hypothesis of Lemma 4, one has: If G;∗σ G

′, then

• G′ is loop free;

• σ(V arinLin(G)).Out(G′) is linear;

• σ(V aroutLin(G)).In(G′) is linear.

B Proof of Lemma 1

Proof. Let G0 = P (x1, . . . , xk−1, l, xk+1, . . . , xn). Since l is linear, G0 is linear
and V arinLin(G0) = In(G0). From Lemma 5, θ(In(G0)).Out(G) is linear and G is
loop-free. Note that In(G0) and Out(G) are tuples of variables. Since the critical
pair is strict,we deduce that θ does not instantiate the variables of In(G0), then
θ(In(G0)).Out(G) is a linear tuple of variables. Consequently, a strict critical
pair is a S-CF clause.

Since G0 is linear, V aroutLin(G0) = V arout(G0). Thus, from Lemma 5,
θ(Out(G0)).In(G) is linear. And since r is linear, the critical pair is a non-copying
clause.

Let Prog = {P (f̂(x), x) ← .} and consider the rewrite rule f(a) → b. Thus

P (f̂(a), y) ;(x/a, y/a) ∅, which gives rise to the extended critical pair P (̂b, a)← .,
which is not a S-CF clause.
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C Proof of Lemma 2

Proof. Consider f(~s)→ r ∈ R (~s is a tuple of terms), and assume that

P ( ~̂x1, f̂(~s), ~̂x2, ~z) ;[P ( ~̂t1,f̂(~u), ~̂t2,~v)←B, θ]
G;∗σ G

′

such that Out(G′) is flat, ~x1, ~x2, ~z, ~u, ~v are tuples of distinct variables and ~t1,
~t2 are tuples of terms (however ~v may share some variables with ~t1.~u.~t2). This

derivation generates the critical pair (σ ◦ θ)(P ( ~̂x1, r̂, ~̂x2, ~z))← G′.
If l → r is consuming then P has no input arguments, i.e. ~z and ~v do not

exist. Therefore σ ◦ θ cannot instantiate the input variables of P , hence the
critical pair is strict.

Otherwise ~s is a linear tuple of variables, and (x/t means that the variable x

is replaced by t) θ = (~v/~z) ◦ ( ~x1/~t1, ~s/~u, ~x2/~t2), which does not instantiate ~z nor
the output variables of B. Moreover Out(B) is flat, then Out(G) = Out(θB) is

flat. Thus G′ = G and the critical pair is P (θ̂ ~x1, θ̂r, θ̂ ~x2, ~z)← G, which is strict.

D Proof of Theorem 2

Proof. Let A ∈Mod(Prog) s.t. A→l→r A′. Then A|i = C[σ(l)] for some i ∈ IN
and A′ = A[i← C[σ(r)].
Since resolution is complete, A;∗ ∅. Since Prog is normalized, resolution con-
sumes symbols of C one by one. Since Prog is coherent with R, the top symbol
of l cannot be generated as an input: it is either consumed in an output argu-
ment, or the whole σ(l) disappears thanks to an output argument. Consequently
G0=A ;∗ Gk ;∗ ∅ and there exists an atom A′′ = P (t1, . . . , tn) in Gk and an
output argument j s.t. tj = σ(l), and along the step Gk ; Gk+1 the top symbol
of tj is consumed or tj disappears entirely. On the other hand, since Prog is
non-copying, A′ ;∗ Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)].

If tj = σ(l) disappears entirely, it can be replaced by any term, then A′ ;∗

Gk[A′′ ← P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅, hence A′ ∈ Mod(Prog). Otherwise the
top symbol of σ(l) is consumed along Gk ; Gk+1. Consider new variables
x1, . . . , xn such that {x1, . . . , xn} ∩ V ar(l) = ∅, and let us define the substi-
tution σ′ by ∀i ∈ {1, . . . , n}, σ′(xi) = ti and ∀x ∈ V ar(l), σ′(x) = σ(x). Then
σ′(P (x1, . . . , xj−1, l, xj+1, . . . , xn)) = A′′, and according to resolution (or nar-
rowing) properties P (x1, . . . , l, . . . , xn) ;∗θ ∅ and θ ≤ σ′. This derivation can be
decomposed into: P (x1, . . . , l, . . . , xn) ;∗θ1 G

′ ;θ2 G;∗θ3 ∅ where θ = θ3◦θ2◦θ1,
and s.t. Out(G′) is not flat and Out(G) is flat11.
The derivation P (x1, . . . , l, . . . , xn) ;∗θ1 G

′ ;θ2 G can be commuted into:
P (x1, . . . , l, . . . , xn) ;∗γ1 B

′ ;γ2 B ;∗γ3 G s.t. Out(B) is flat, Out(B′) is not
flat, and within P (x1, . . . , l, . . . , xn) ;∗γ1 B

′ ;γ2 B resolution is applied only
on atoms whose output is not flat, and we have γ3 ◦ γ2 ◦ γ1 = θ2 ◦ θ1. Then

11 Since ∅ is flat, a goal having a flat output can always be reached, i.e. in some cases
G = ∅.
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γ2 ◦ γ1(P (x1, . . . , r, . . . , xn)) ← B is a critical pair. By hypothesis, it is conver-
gent, then γ2 ◦ γ1(P (x1, . . . , r, . . . , xn))→∗ B. Note that γ3(B)→∗ G and recall
that θ3◦γ3◦γ2◦γ1 = θ3◦θ2◦θ1 = θ. Then θ(P (x1, . . . , r, . . . , xn))→∗ θ3(G)→∗ ∅,
and since θ ≤ σ′ we get P (t1, . . . , σ(r), . . . , tn) = σ′(P (x1, . . . , r, . . . , xn))→∗ ∅.
Therefore A′;∗Gk[A′′←P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅, hence A′ ∈Mod(Prog).
By trivial induction, the proof can be extended to the case of several rewrite
steps.

E Ensuring finitely many critical pairs

The following example illustrates a situation where the number of critical pairs
is infinite.

Example 14. Let Σ = {f\2, c\1, d\1, s\1, a\0}, f(c(x), y) → d(y) be a rewrite

rule, and {P0(f̂(x, y))←P1(x̂, ŷ). P1(x̂, ŝ(y))←P1(x̂, ŷ). P1(ĉ(x), ŷ)←P2(x̂, ŷ).

P2(â, â) ← .} a S-CF programs. Then P0( ̂f(c(x), y)) → P1(ĉ(x), ŷ) ;y/s(y)

P1(ĉ(x), ŷ) ;y/s(y) · · ·P1(ĉ(x), ŷ)→ P2(x̂, ŷ). Resolution is applied only on non-
flat atoms and the last atom obtained by this derivation is flat. The composition
of substitutions along this derivation gives y/sn(y) for some n ∈ IN. There are
infinitely many such derivations, which generates infinitely many critical pairs

of the form P0( ̂d(sn(y)))← P2(x̂, ŷ).

This is annoying since the completion process presented in the following needs
to compute all critical pairs. This is why we define sufficient conditions to ensure
that a given finite S-CF program has finitely many critical pairs.

Definition 13.
Prog is empty-recursive if there exist a predicate symbol P and two tuples ~x =

(x1, . . . , xn), ~y = (y1, . . . , yk) composed of distinct variables s.t. P (~̂x.~y) ;+
σ

A1, . . . , P ( ~̂x′.~t′), . . . , Ak where ~x′ = (x′1, . . . , x
′
n) is a tuple of variables and there

exist i, j s.t. x′i = σ(xi) and σ(xj) is not a variable and x′j ∈ V ar(σ(xj)).

Example 15. Let Prog be the S-CF program defined as follows:

Prog = {P (x̂′, ŝ(y′))← P (x̂′, ŷ′). P (â, b̂)← .} From P (x̂, ŷ), one can obtained

the following derivation: P (x̂, ŷ) ;[x/x′, y/s(y′)] P (x̂′, ŷ′). Consequently, Prog
is empty-recursive since σ = [x/x′, y/s(y′)], x′ = σ(x) and y′ is a variable of
σ(y) = s(y′).

The following lemma shows that the non empty-recursiveness of a S-CF pro-
gram is sufficient to ensure the finiteness of the number of critical pairs.

Lemma 6. Let Prog be a normalized S-CF program.
If Prog is not empty-recursive, then the number of critical pairs is finite.

Remark 2. Note that the S-CF program of Example 14 is normalized and has
infinitely many critical pairs. However it is empty-recursive because
P1(x̂, ŷ) ;[x/x′, y/s(y′)] P1(x̂′, ŷ′).
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Proof. By contrapositive. Let us suppose there exist infinitely many critical
pairs. So there exist P1 and infinitely many derivations of the form
(i): P1(x1, . . . , xk−1, l, xk+1, . . . , xn) ;∗α G′ ;θ G (the number of steps is not
bounded). As the number of predicates is finite and every predicate has a fixed
arity, there exists a predicate P2 and a derivation of the form
(ii): P2(t1, . . . , tp) ;k

σ G′′1 , P2(t′1, . . . , t
′
p), G

′′
2 (with k > 0) included in some

derivation of (i), strictly before the last step, such that:

1. Out(G′′1) and Out(G′′2) are flat and the derivation from P2(t1, . . . , tp) can be
applied on P2(t′1, . . . , t

′
p) again, which gives rise to an infinite derivation.

2. σ is not empty and there exists a variable x in P2(t1, . . . , tp) such that
σ(x) = t and t is not a variable and contains a variable y that occurs in
P2(t′1, . . . , t

′
p). Otherwise σ ◦ . . .◦σ would always be a variable renaming and

there would be finitely many critical pairs.
3. There is at least one non-variable term (let tj) in output arguments of
P2(t1, . . . , tp) (due to the definition of critical pairs) such that t′j = tj

12.
As we use a S-CF clause in each derivation step, the output argument t′j
matches a variable (output argument) in the body of the last clause used in
(ii). As t′j = tj , the output argument tj matches a variable (output argu-
ment) in head of the first clause used in (ii). So, for each variable x occurring
in the non-variable output terms of P2, we have σ(x) = x.

4. From the previous item, we deduce that the variable x found in item 2 is
one of the terms t1, . . . , tp, say tk. We can assume that y is t′k. tk is an
output argument of P2 because it matches a non-variable and only output
arguments are non-variable in the head of S-CF clause.

If in derivation (ii) we replace all non-variable output terms by new variables,
we obtain a new derivation13

(iii): P2(x1, . . . , xn, tn+1, . . . , tp) ;k
σ′ G′′′1 , P2(x′1, . . . , x

′
n, t
′
n+1, . . . , t

′
p), G

′′′
2 and

there exists i, k (in {1, . . . n}) such that σ′(xi) = x′i (at least one non-variable
term (in output arguments) in the (ii) derivation), and σ′(xk) = tk, x′k is a
variable of tk. We conclude that Prog is empty-recursive.

Deciding the empty-recursiveness of a S-CF program seems to be a difficult
problem (undecidable ?). Nevertheless, we propose a sufficient syntactic condi-
tion to ensure that a S-CF program is not empty-recursive.

Definition 14.
The S-CF clause P (t̂1, . . . , t̂n, x1, . . . , xk) ← A1, . . . , Q(. . .), . . . , Am is pseudo-

empty over Q if there exist i, j s.t.

– ti is a variable,

12 This property does not necessarily hold as soon as P2 is reached within (ii). We
may have to consider further occurrences of P2 so that each required term occurs in
the required argument, which will necessarily happen because there are only finitely
many permutations.

13 Without loss of generality, we can consider that the output arguments (at least two)
are the first arguments of P2.
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– and tj is not a variable,
– and ∃x ∈ V ar(tj), x 6= ti ∧ {x, ti} ⊆ V arOut(Q(. . .)).

Roughly speaking, when making a resolution step issued from the following flat
atom P (ŷ1, . . . , ŷn, z1, . . . , zk), the variable yi is not instantiated, and yj is in-
stantiated by something that is synchronized with yi (in Q(. . .)).

The S-CF clause H ← B is pseudo-empty if there exists some Q s.t. H ← B
is pseudo-empty over Q.

The S-CF clause P (t̂1, . . . , t̂n, x1, . . . , xn′)← A1, . . . , Q(ŷ1, . . . , ŷk, s1, . . . , sk′), . . . , Am
is empty over Q if for all yi, (∃j, tj = yi or yi 6∈ V ar(P (t̂1, . . . , t̂n, x1, . . . , xn′))).

Example 16. The S-CF clause P (x̂, f̂(x), ẑ) ← Q(x̂, ẑ) is both pseudo-empty
(thanks to the second and the third argument of P ) and empty over Q (thanks
to the first and the third argument of P ).

Definition 15. Using Definition 14, let us define two relations over predicate
symbols.

– P1 �Prog P2 if there exists in Prog a clause empty over P2 of the form
P1(. . .) ← A1, . . . , P2(. . .), . . . , An. The reflexive-transitive closure of �Prog
is denoted by �∗Prog.

– P1 >Prog P2 if there exist in Prog predicates P ′1, P ′2 s.t. P1 �
∗
Prog P

′
1 and

P ′2 �
∗
Prog P2, and a clause pseudo-empty over P ′2 of the form

P ′1(. . .)← A1, . . . , P
′
2(. . .), . . . , An. The transitive closure of >Prog is denoted

by >+
Prog.

Prog is cyclic if there exists a predicate P s.t. P >+
Prog P .

Example 17. Let Σ = {f\1, h\1, a\0}. Let Prog be the following S-CF program

{P (x̂, ĥ(y), f̂(z))←Q(x̂, ẑ), R(ŷ). Q(x̂, ĝ(y, z))←P (x̂, ŷ, ẑ). R(â)← . Q(â, â)←
.}. One has P >Prog Q and Q >Prog P . Thus, Prog is cyclic.

The lack of cycles is the key point of our technique since it ensures the
finiteness of the number of critical pairs.

Lemma 7. If Prog is not cyclic, then Prog is not empty-recursive, consequently
the number of critical pairs is finite.

Proof. By contrapositive. Let us suppose that Prog is empty recursive. So it ex-

ists P s.t. P (x̂1, . . . , x̂n, y1, . . . , yn′) ;+
σ A1, . . . , P (x̂′1, . . . , x̂

′
n, t
′
1, . . . , t

′
n′), . . . , Ak

where x′1, . . . , x
′
n are variables and there exist i, j s.t. x′i = σ(xi) and σ(xj) is not

a variable and x′j ∈ V ar(σ(xj)). We can extract from the previous derivation
the following derivation which has p steps (p ≥ 1). P (x̂1, . . . , x̂n, y1, . . . , yn′) =
Q0(x̂1, . . . , x̂n, y1, . . . , yn′) ;α1

B1
1 . . . Q

1(x̂11, . . . , x̂
1
n1
, t11, . . . , t

1
n′
1
) . . . B1

k1
;α2

B1
1 . . . B

2
1 . . . Q

2(x̂21, . . . , x̂
2
n2
, t21, . . . , t

2
n′
2
) . . . B2

k2
. . . B1

k1
;α3 . . .;αp
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B1
1 . . . B

p
1 . . . Q

p(x̂p1, . . . , x̂
p
np , t

p
1, . . . , t

p
n′
p
) . . . Bpkp . . . B

1
k1

where Qp(x̂p1, . . . , x̂
p
np , t

p
1, . . . , t

p
n′
p
) = P (x̂′1, . . . , x̂

′
n, t
′
1, . . . , t

′
n′).

For each k (after k steps in the previous derivation), αk ◦ αk−1 . . . ◦ α1(xi) is a

variable of Out(Qk(x̂k1 , . . . , x̂
k
nk
, tk1 , . . . , t

k
n′
k
)) and αk ◦ αk−1 . . . ◦ α1(xj) is either

a variable of Out(Qk(x̂k1 , . . . , x̂
k
nk
, tk1 , . . . , t

k
n′
k
)) or a non-variable term containing

a variable of Out(Qk(x̂k1 , . . . , x̂
k
nk
, tk1 , . . . , t

k
n′
k
)).

Each derivation step issued from Qk uses either a clause pseudo-empty over
Qk+1 and we deduce Qk >Prog Q

k+1, or an empty clause over Qk+1 and we
deduce Qk�ProgQ

k+1. At least one step uses a pseudo-empty clause otherwise no
variable from x1, . . . , xn would be instantiated by a non-variable term containing
at least one variable in x′1, . . . , x

′
n.

We conclude that P = Q0 op1 Q
1 op2 Q

2 . . . Qp−1 opp Qp = P with each opi is
>Prog or �Prog and there exists k such that opk is >Prog. Therefore P >+

Prog P ,
so Prog is cyclic.

Thus, if Prog is not cyclic, then all is fine. Otherwise, we have to transform
Prog into Prog′ such as Prog′ is not cyclic and Mod(Prog) ⊆Mod(Prog′).

The transformation is based on the following observation. If Prog is cyclic,
there is at least one pseudo-empty clause that participates in a cycle. In Ex-

ample 17, P (x̂, ĥ(y), f̂(z)) ← Q(x̂, ẑ), R(ŷ) is a pseudo-empty clause over Q in-

volved in the cycle. To remove the cycle, we transform it into P (x̂, ĥ(y), f̂(z))←
Q(x̂, x̂2), R(x̂1), Q(x̂3, ẑ), R(ŷ) (x1, x2, x3 are new variables), which is not pseudo-
empty anymore. The main process is described in Definition 19. Definitions 16, 17
and 18 are preliminary definitions used in Definition 19. Example 18 illustrates
the definitions. If there are input arguments then some variables occurring in the
input arguments of the body must also be renamed in order to get a non-copying
S-CF clause.

Definition 16. P is unproductive (in Prog) if
¬(∃t1, . . . , tn, t′1, . . . , t′k ∈ TΣ , P (t̂1, . . . , t̂n, t

′
1, . . . , t

′
k) ∈Mod(Prog)).

Definition 17 (simplify). Let H ← A1, . . . , An be a S-CF clause, and for each
i, let us write Ai = Pi(. . .).
If there exists Pi s.t. Pi is unproductive then simplify(H ← A1, . . . , An) is the
empty set, otherwise it is the set that contains only the clause H ← B1, . . . , Bm
such that

– {Bi | 0 ≤ i ≤ m} ⊆ {Ai | 0 ≤ i ≤ n} and
– ∀i ∈ {1, . . . , n}, (¬(∃j, Bj = Ai) ⇔ (V ar(Ai) ∩ V ar(H) = ∅ ∧ ∀k 6=
i, V ar(Ai) ∩ V ar(Ak)=∅)).

In other words, simplify deletes unproductive clauses, or it removes the atoms of
the body that contain only free variables.

Remark 3. Let H ← B be a non-copying S-CF clause. If the variable x occurs
several times in B then x 6∈ V ar(H).
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Definition 18 (unSync). Let H ← B be a non-copying S-CF clause.
Let us write Out(H) = (t1, . . . , tn) and In(B) = (s1, . . . , sk).

unSync(H ← B) = simplify(H ← σ0(B), σ1(B)) where σ0, σ1 are substitutions
built as follows. ∀x ∈ V ar(B):

σ0(x) =




x if x ∈ V arOut(B) ∧ ∃i, ti = x
x if x ∈ V arIn(B) ∩ V arIn(H) ∧ ∃j, (sj = x)
a fresh variable otherwise

σ1(x) =




x if x ∈ V arOut(B) ∧ ∃i, (ti 6∈ Var ∧ x ∈ Var(ti))
x if x ∈ V arIn(B) ∩ V arIn(H) ∧ ∃j, (sj 6∈ Var ∧ x ∈ Var(sj))
a fresh variable otherwise

Definition 19 (removeCycles). Let Prog be a S-CF program.
If Prog is not cyclic, removeCycles(Prog) = Prog otherwise
removeCycles(Prog) = removeCycles({unSync(H ← B)} ∪ Prog′) where H ← B
is a pseudo-empty clause involved in a cycle and Prog′ = Prog \ {H ← B}.

Example 18. Let Prog be the S-CF program of Example 17. Since Prog is cyclic,
let us compute removeCycles(Prog). The pseudo-empty S-CF clause

P (x̂, ĥ(y), f̂(z)) ← Q(x̂, ẑ), R(ŷ) is involved in the cycle. Consequently, unSync
is applied on it. According to Definition 18, one obtains σ0 and σ1 where σ0 =
[x/x, y/x1, z/x2] and σ1 = [x/x3, y/y, z/z]. Thus, one obtains the S-CF clause

P (x̂, ĥ(y), f̂(z)) ← Q(x̂, x̂2), R(x̂1), Q(x̂3, ẑ), R(ŷ). Note that according to Defi-
nition 18, simplify is applied and removes R(x̂1) from the body. Following Defini-

tions 17 and 19, one has to remove P (x̂, ĥ(y), f̂(z)) ← Q(x̂, ẑ), R(ŷ) from Prog

and to add P (x̂, ĥ(y), f̂(z)) ← Q(x̂, x̂2), Q(x̂3, ẑ), R(ŷ) instead. Note that the
atom R(x̂1) has been removed using simplify. Note also that there is no cycle
anymore.

Lemma 8 describes that our transformation preserves at least and may extend
the initial least Herbrand Model.

Lemma 8. Let Prog be a non-copying S-CF program and
Prog′ = removeCycles(Prog). Then Prog′ is a non-copying and non-cyclic S-CF
program, and Mod(Prog) ⊆Mod(Prog′). Moreover, if Prog is normalized, then
so is Prog′.

Consequently, there are finitely many critical pairs in Prog′.

F Proof of Theorem 3

Proof. The proof is straightforward.
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G Example 10 in Detail

Let I = {f(a, a)} and R = {f(x, y) → u(f(v(x), w(y)))}. Intuitively, the exact
set of descendants is R∗(I) = {un(f(vn(a), wn(a))) | n ∈ N} where un means

that u occurs n times. We define Prog = {Pf (f̂(x, y)) ← Pa(x̂), Pa(ŷ). (1),
Pa(â)← . (2)}. Note that LProg(Pf ) = I.

Using clause (1) we have Pf (f̂(x, y))→(1) Pa(x̂), Pa(ŷ) generating the critical

pair: Pf ( ̂u(f(v(x), w(y)))) ← Pa(x̂), Pa(ŷ). In order to normalize this critical
pair, we choose to generate symbols u, f as output, v, w as input. Moreover only
one predicate symbol of arity 3 is allowed. It produces three new S-CF clauses :

Pf (ẑ) ← P1(ẑ, x, y), Pa(x̂), Pa(ŷ). (3), P1(û(z), x, y) ← P1(ẑ, v(x), w(y)). (4)

and P1(f̂(x, y), x, y)← . (5).

Now Pf ( ̂f(x′, y′)) →(3) P1( ̂f(x′, y′), x, y), Pa(x̂), Pa(ŷ) ;(5),σ Pa(x̂), Pa( ŷ)

where σ = (x′/x, y′/y). It generates the critical pair Pf ( ̂u(f(v(x), w(y))) ) ←
Pa(x̂), Pa(ŷ) again, which is convergent. Since one has P1( ̂f(x′, y′), x, y);(5),(x′/x, y′/y)

∅, the critical pair P1( ̂u(f(v(x), w(y))), x, y)← . can be computed, but it is al-
ready convergent.

No other critical pair is detected. Then, we get the S-CF program Prog′

composed of clauses (1) to (5), and note that LProg′(Pf ) = R∗(I) indeed.

H Example 11 in Detail

Let I = {d1(a, a, a)} and

R =

{
d1(x, y, z)

1→ d1(h(x), i(y), s(z)), d1(x, y, z)
2→ d2(x, y, z)

d2(x, y, s(z))
3→ d2(f(x), g(y), z), d2(x, y, a)

4→ c(x, y)

}

R∗(I) is composed of all terms appearing in the following derivation:

d1(a, a, a)
1→n d1(hn(a), in(a), sn(a))

2→ d2(hn(a), in(a), sn(a))
3→k d2(fk(hn(a)), gk(in(a)), sn−k(a))

4→ c(fn(hn(a)), gn(in(a))) .
Note that the last rewrite step by rule 4 is possible only when k = n. Let Prog be

an S-CF program such that Prog = {Pd( ̂d1(x, y, z))← Pa(x̂), Pa(ŷ), Pa(ẑ). (1),
Pa(â)← . (2)}. Thus LProg(Pd) = I.

By applying clause (1) and using rule 1, we get the critical pair:

Pd( ̂d1(h(x), i(y), s(z))) ← Pa(x̂), Pa(ŷ), Pa(ẑ). To normalize it, we choose to
generate all symbols as output. Then the following clauses (3) and (4) are

added into Prog: Pd( ̂d1(x, y, z)) ← P1(x̂, ŷ, ẑ). (3) and P1(ĥ(x), î(y), ŝ(z)) ←
Pa(x̂), Pa(ŷ), Pa(ẑ). (4). By applying clause (1) and using rule 2, we obtain the

critical pair Pd( ̂d2(x, y, z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ). (5). This critical pair being
already normalized, it is directly added into Prog.
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We obtain the critical pair Pd( ̂d1(h(x), i(y), s(z)))← P1(x̂, ŷ, ẑ) by applying
clause (3) and rule 1. To normalize it, we choose to generate all symbols as out-

put. It produces clause (3) again, as well as P1(ĥ(x), î(y), ŝ(z))← P1(x̂, ŷ, ẑ). (6).
Applying clause (3) and using rule 2, we get the critical pair:

Pd( ̂d2(x, y, z))← P1(x̂, ŷ, ẑ). (7) which is already normalized. Thus, it is directly
added into Prog. Applying clause (5) and using rule 4, we get the critical pair

Pd(ĉ(x, y)) ← Pa(x̂), Pa(ŷ). (8) which is already normalized. Consequently, it
is directly added into Prog.

By applying clauses (7) and (4), and using rule 3, we get the critical pair:

Pd( ̂d2(f(h(x)), g(i(y)), z)) ← Pa(x̂), Pa(ŷ), Pa(ẑ). To normalize it, we choose to
generate d2, f , g as output, and h, i as input. It produces:

Pd( ̂d2(x, y, z))← P2(x̂, ŷ, ẑ, x′, y′, z′), Pa(x̂′), Pa(ŷ′), Pa(ẑ′). (9)

P2(f̂(x), ĝ(y), ẑ, x′, y′, z′)← P2( x̂, ŷ, ẑ, h(x′), i(y′), z′) (10’)
P2(x̂, ŷ, ẑ, x, y, z)← . (11)

Now, clause (10′) may provide an infinite number of critical pairs. Applying

removeCycles makes clause (10’) be substituted by P2(f̂(x), ĝ(y), ẑ, x′, y′, z′) ←
P2(x̂, ŷ, ẑ1, h(x′), i(y′), z′1), P2(x̂1, ŷ1, ẑ, h(x′1), i(y′1), z′) (10).

By applying clauses (7) and (6), and using rule 3, we get the critical pair:

Pd( ̂d2(f(h(x)), g(i(y)), z)) ← P1(x̂, ŷ, ẑ). We normalize it as previously. We get

Pd( ̂d2(x, y, z))←P2(x̂, ŷ, ẑ, x′, y′, z′), P1(x̂′, ŷ′, ẑ′). (12) as well as (10), (11) again.
With clauses (9 or 12), (10), and rule 3, we get the convergent critical pairs

Pd( ̂d2(f(f(x)), g(g(y)), z))←P2(x̂, ŷ, ẑ1,h(h(x′)), i(i(y′)), z′1),Pa(x̂′),Pa(ŷ′),Pa(ẑ)

and Pd( ̂d2(f(f(x)), g(g(y)), z))← P2(x̂, ŷ, ẑ1, h(h(x′)), i(i(y′ )), z′1), P1(x̂′, ŷ′, ẑ).
By applying clauses (9 or 12) and (11), and using rule 3, we get the convergent

critical pairs Pd( ̂d2(f(h(x)), g(i(y)), z))← P1(x̂, ŷ, ẑ). and Pd( ̂d2(f(h(x)), g(i(y)), z))←
Pa(x̂), Pa(ŷ), Pa(ẑ). By applying clauses 9 and 11, and using rule 4, we get the

convergent critical pair Pd(ĉ(x, y)) ← Pa(x̂), Pa(ŷ). Applying clauses 9 and 10,

and using rule 4, we get the critical pair: Pd( ̂c(f(x), g(y)))← P2(x̂, ŷ, ẑ, h(x′), i(y′), z′),

Pa(x̂′), Pa(ŷ′). Its normalization gives the clauses: P3(f̂(x), ĝ(y))← P2(x̂, ŷ, ẑ,

h(x′), i(y′), z′), Pa(x̂′), Pa(ŷ′). (13) and Pd(ĉ(x, y))← P3(x̂, ŷ). (14). Note that
the symbols c, f and g have been considered as output parameters.

No more critical pairs are detected and the procedure stops. The result-
ing program Prog′ is composed of clauses (1) to (14). Note that the subset
of descendants d2(fk(hn(a)), gk(in(a)), sn−k(a)) can be seen (with p = n − k)
as d2(fk(hk+p(a)), gk(ik+p(a )), sp(a)). The reader can check by himself that
LProg′(Pd) is exactly R∗(I).


