
Synchronized Tree Languages for
Reachability in Non-right-linear Term

Rewrite Systems (full version)

Yohan Boichut, Vivien Pelletier and Pierre Réty

LIFO, Université d’Orléans

Rapport no RR-2015-03

Synchronized Tree Languages for Reachability in
Non-right-linear Term Rewrite Systems

Yohan Boichut, Vivien Pelletier and Pierre Réty

LIFO - Université d’Orléans, B.P. 6759, 45067 Orléans cedex 2, France
{yohan.boichut, vivien.pelletier, pierre.rety}@univ-orleans.fr

Abstract. Over-approximating the descendants (successors) of an ini-
tial set of terms under a rewrite system is used in reachability analysis.
The success of such methods depends on the quality of the approxima-
tion. Regular approximations (i.e. those using finite tree automata) have
been successfully applied to protocol verification and Java program anal-
ysis. In [9, 2], non-regular approximations have been shown more precise
than regular ones. In [3] (fixed version of [2]), we have shown that sound
over-approximations using synchronized tree languages can be computed
for left-and-right-linear term rewriting systems (TRS). In this paper,
we present two new contributions extending [3]. Firstly, we show how
to compute at least all innermost descendants for any left-linear TRS.
Secondly, a procedure is introduced for computing over-approximations
independently of the applied rewrite strategy for any left-linear TRS.

Keywords: tree languages, term rewriting, reachability analysis.

The reachability problem R∗(I)∩Bad ?
= ∅ is a well-known undecidable prob-

lem, where I is an initial set of terms, Bad is a set of forbidden terms and R∗(I)
denotes the terms issued from I using the rewrite system R. Some techniques
compute regular over-approximations of R∗(I) in order to show that no term of
Bad is reachable from I [7, 6, 1, 4].

In [5], we have defined a reachability problem for which none of those tech-
niques works. In [3] (corrected version of [2]), we have described a technique for
computing non-regular approximations using synchronized tree languages. This
technique can handle the reachability problem of [5]. These synchronized tree
languages [10, 8] are recognized using CS-programs [11], i.e. a particular class of
Horn clauses. From an initial CS-program Prog and a linear term rewrite system
(TRS) R, another CS-program Prog′ is computed in such a way that its lan-
guage represents an over-approximation of the set of terms (called descendants)
reachable by rewriting using R, from the terms of the language of Prog. This
algorithm is called completion.

In this paper, we present two new results that hold even if the TRS is not
right-linear:

1. We show that a slight modification of completion gives an over-approximation
of the descendants obtained with an innermost strategy (see Section 2).

3

2. We introduce a technique for over-approximating1 copying2 clauses by non-
copying ones, so that all descendants (not only the innermost ones) are
obtained (see Section 3).

1 Preliminaries

Consider two disjoint sets, Σ a finite ranked alphabet and Var a set of vari-
ables. Each symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of
first-order term, position and substitution are defined as usual. Given two sub-
stitutions σ and σ′, σ ◦ σ′ denotes the substitution such that for any variable
x, σ ◦ σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without variables)
over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the set of
positions of t. For p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at po-
sition p in t, and t|p is the subterm of t at position p. The term t is linear if
each variable of t occurs only once in t. The term t[t′]p is obtained from t by
replacing the subterm at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var},
PosNonVar(t) = {p ∈ Pos(t) | t(p) 6∈ Var}.

A rewrite rule is an oriented pair of terms, written l→ r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite
set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The
rewrite relation →R is defined as follows: t →R t′ if there exist a position p ∈
PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ =
t[θ(r)]p. →∗R denotes the reflexive-transitive closure of→R. t′ is a descendant of
t if t→∗R t′. If E is a set of ground terms, R∗(E) denotes the set of descendants
of elements of E. The rewrite rule l → r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right)
linear. R is linear if R is both left and right linear.

1.1 CS-Program

In the following, we consider the framework of pure logic programming, and the
class of synchronized tree-tuple languages defined by CS-clauses [11, 12]. Given a
set Pred of predicate symbols; atoms, goals, bodies and Horn-clauses are defined
as usual. Note that both goals and bodies are sequences of atoms. We will use
letters G or B for sequences of atoms, and A for atoms. Given a goal G =
A1, . . . , Ak and positive integers i, j, we define G|i = Ai and G|i.j = (Ai)|j = tj
where Ai = P (t1, . . . , tn).

Definition 1. Let B be a sequence of atoms.
B is flat if for each atom P (t1, . . . , tn) of B, all terms t1, . . . , tn are variables.

1 This approximation is often exact, but not always. This is due to the fact that a
tree language expressed by a copying CS-program cannot always be expressed by a
non-copying one.

2 I.e. clause heads are not linear.

4

B is linear if each variable occurring in B (possibly at sub-term position) occurs
only once in B. So the empty sequence of atoms (denoted by ∅) is flat and linear.

A CS-clause3 is a Horn-clause H ← B s.t. B is flat and linear. A CS-
program Prog is a logic program composed of CS-clauses. Variables contained
in a CS-Clause have to occur only in this clause. Pred(Prog) denotes the set of
predicate symbols of Prog. Given a predicate symbol P of arity n, the tree-(tuple)
language generated by P is LProg(P) = {t ∈ (TΣ)n | P (t) ∈Mod(Prog)}, where
TΣ is the set of ground terms over the signature Σ and Mod(Prog) is the least
Herbrand model of Prog. LProg(P) is called synchronized language.

The following definition describes syntactic properties over CS-clauses.

Definition 2. A CS-clause P (t1, . . . , tn)← B is :

– empty if ∀i ∈ {1, . . . , n}, ti is a variable.

– normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occurrence
of function-symbol.

– non-copying if P (t1, . . . , tn) is linear.

A CS-program is normalized and non-copying if all its clauses are.

Example 1. Let x, y, z be variables. P (x)← Q(f(x)) is not a CS-clause.
P (x, y, z)← Q(x, y, z) is a CS-clause, and is empty, normalized and non-copying.
The CS-clause P (f(x), y, g(x, z)) ← Q1(x), Q2(y, z) is normalized and copying.
P (f(g(x)), y)← Q(x) is not normalized.

Given a CS-program, we focus on two kinds of derivations.

Definition 3. Given a logic program Prog and a sequence of atoms G,

– G derives into G′ by a resolution step if there exist a clause H ← B in Prog
and an atom A ∈ G such that A and H are unifiable by the most general
unifier σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is written
G;σ G

′.

– G rewrites into G′ if there exist a clause H ← B in Prog, an atom A ∈ G,
and a substitution σ, such that A = σ(H) (A is not instantiated by σ) and
G′ = G[A← σ(B)]. It is written G→σ G

′.

Sometimes, we will write G ;[H←B,σ] G
′ or G →[H←B,σ] G

′ to indicate the
clause used by the step.

Example 2. Let Prog = {P (x1, g(x2))← P ′(x1, x2). P (f(x1), x2)← P ′′(x1, x2).},
and consider G = P (f(x), y). Thus, P (f(x), y) ;σ1

P ′(f(x), x2) with σ1 =
[x1/f(x), y/g(x2)] and P (f(x), y)→σ2

P ′′(x, y) with σ2 = [x1/x, x2/y].

3 In former papers, synchronized tree-tuple languages were defined thanks to sorts of
grammars, called constraint systems.Thus ”CS” stands for Constraint System.

5

Note that for any atom A, if A→ B then A; B. On the other hand, A;σ B
implies σ(A)→ B. Consequently, if A is ground, A; B implies A→ B.

We consider the transitive closure ;+ and the reflexive-transitive closure ;∗

of ;.
For both derivations, given a logic program Prog and three sequences of

atoms G1, G2 and G3 :

– if G1 ;σ1
G2 and G2 ;σ2

G3 then one has G1 ;∗σ2◦σ1
G3;

– if G1 →σ1
G2 and G2 →σ2

G3 then one has G1 →∗σ2◦σ1
G3.

In the remainder of the paper, given a set of CS-clauses Prog and two se-
quences of atoms G1 and G2, G1 ;∗Prog G2 (resp. G1 →∗Prog G2) also denotes
that G2 can be derived (resp. rewritten) from G1 using clauses of Prog.

It is well known that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈Mod(Prog) iff A;∗Prog ∅.

1.2 Computing descendants

Due to the lack of space, we just give the main ideas using an example. See [2]
for a formal description.

Example 3. Let R = {f(x) → g(h(x))} and let I = {f(a)} generated by Predi-
cate P in the CS-program Prog = {P (f(x))← Q(x). Q(a)←}.
Note that R∗(I) = {f(a), g(h(a))}.

To simulate the rewrite step f(a) → g(h(a)), we consider the rewrite-rule
left-hand-side f(x). We can see that P (f(x)) →Prog Q(x) and P (f(x)) →R

P (g(h(x))). Then the clause P (g(h(x))) ← Q(x) is called critical pair4. This
critical pair is not convergent (in Prog) because ¬(P (g(h(x))) →∗Prog Q(x)).
To get the descendants, the critical pairs should be convergent. Let Prog′ =
Prog ∪ {P (g(h(x)))← Q(x)}. Now the critical pair is convergent in Prog′, and
note that the predicate P of Prog′ generates R∗(I).

Since critical pairs are computed only at root positions, we consider only
normalized CS-programs, and Prog′ is not normalized. The critical pair can be
normalized using a new predicate symbol, and replaced by normalized clauses
P (g(y)) ← Q1(y). Q1(h(x)) ← Q(x). This is the role of Function norm in the
completion algorithm below.

In general, adding a critical pair (after normalizing it) into the CS-program
may create new critical pairs, and the completion process may not terminate.
To force termination, two bounds predicate-limit and arity-limit are fixed. If
predicate-limit is reached, Function norm should re-use existing predicates in-
stead of creating new ones. If a new predicate symbol is created whose arity5 is
greater than arity-limit, then this predicate has to be cut by Function norm into
several predicates whose arities do not exceed arity-limit.

4 In former work, a critical pair was a pair. Here it is a clause since we use logic
programs.

5 The number of arguments.

6

Before normalizing a critical pair H ← B (more precisely at the beginning
of Function norm), for efficiency we first try to reduce H (into some H ′) using
the CS-clauses of Prog. This mechanism is called simplification.

On the other hand, for a given CS-program, the number of critical pairs may
be infinite. Function removeCycles modifies some clauses so that the number of
critical pairs is finite.

Definition 4 ([3]). Let arity-limit and predicate-limit be positive integers. Let
R be a linear rewrite system, and Prog be a finite, normalized and non-copying
CS-program. The completion process is defined by:
Function compR(Prog)

Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

The following results show that an over-approximation of the descendants is
computed.

Theorem 2 ([3]). Let R be a left-linear6 rewrite system and Prog be a nor-
malized non-copying CS-program.
If all critical pairs are convergent, then Mod(Prog) is closed under rewriting by
R, i.e. (A ∈Mod(Prog) ∧A→∗R A′) =⇒ A′ ∈Mod(Prog).

Theorem 3 ([3]). Let R be a linear rewrite system and Prog be a normalized
non-copying CS-program. Function comp always terminates, and all critical pairs
are convergent in compR(Prog).
Moreover, R∗(Mod(Prog)) ⊆Mod(compR(Prog)).

2 Computing innermost descendants

Starting from a non-copying program Prog and given a left-linear TRS R, using
the completion algorithm presented in the previous section we may obtain a
copying final program Prog′. Consequently, the language accepted by Prog′ may
not be closed under rewriting i.e. Prog′ may not recognize an over-approximation
of the descendants. Example 4 illustrates this problem.

Example 4. Let Prog = {P (g(x)) ← Q(x). Q(a) ←} and R = {a → b, g(x) →
f(x, x)}. Performing the completion algorithm detailed in Definition 4 returns
compR(Prog) = {P (g(x)) ← Q(x). P (f(x, x)) ← Q(x). Q(a) ← . Q(b) ←}.
Note that P (f(a, b)) 6∈ Mod(compR(Prog)) although P (g(a)) ∈ Mod(Prog)
and P (g(a))→∗R P (f(a, b)).

6 From a theoretical point of view, left-linearity is sufficient when every critical pair
is convergent. However, to make every critical pair convergent by completion, full
linearity is necessary (see Theorem 3).

7

Thus, some descendants of Mod(Prog) are missing in Mod(compR(Prog)). How-
ever, all descendants obtained by innermost rewriting (subterms are rewritten
at first) are in Mod(compR(Prog)), since the only innermost rewrite derivation
issued from g(a) is g(a)→in

R g(b)→in
R f(b, b).

In this section, we show that with a slight modification of [3], if the initial
CS-program Prog is non-copying and R is left-linear (and not necessarily right-
linear), we can perform reachability analysis for innermost rewriting. Theorem 5
shows that, in that case, we compute at least all the descendants obtained by
innermost rewriting. To get this result, it has been necessary to prove a result
about closure under innermost rewriting (Theorem 4).

To prove these results, additional definitions are needed. Indeed, to perform
innermost rewriting, the rewrite steps are done on terms whose subterms are
irreducible (cannot be rewritten). However, for a given TRS, the property of
irreducibility is not preserved by instantiation, i.e. if a term t and a substitution
θ are irreducible, then θt is not necessarily irreducible. This is why we need to
consider a stronger property.

Definition 5. Let R be a TRS. A term t is strongly irreducible (by R) if for
all p ∈ PosNonVar(t), for all l→ r ∈ R, t|p and l are not unifiable.
A substitution θ is strongly irreducible if for all x ∈ Var, θx is strongly irre-
ducible.

Lemma 1. If t is strongly irreducible, then t is irreducible.

Proof. By contrapositive. If t →[p,l→r,σ] t
′, then t|p = σl. Since it is assumed

that V ar(t) ∩ V ar(l) = ∅, then t|p and l are unifiable by σ.

Lemma 2. If t is strongly irreducible, then for all p ∈ Pos(t), t|p is strongly
irreducible.
For a substitution θ, if θt is strongly irreducible, then for all x ∈ V ar(t), θx is
strongly irreducible (but t is not necessarily strongly irreducible).

Proof. Obvious.

Example 5. Let t = f(x), θ = (x/a), R = {f(b)→ b}. Thus θt = f(a) is strongly
irreducible whereas t is not.

Corollary 1. For substitutions α, θ, if α.θ is strongly irreducible, then α is
strongly irreducible.

Note that the previous definitions and lemmas trivially extend to atoms and
atom sequences.

Lemma 3. (closure by instantiation) If t is strongly irreducible and θ is irre-
ducible, then θt is irreducible.

Proof. By contrapositive. If θt→[p,l→r,σ] t
′, then (θt)|p = σl.

- If p 6∈ PosNonVar(t), then there exist a variable x and a position p′ s.t.
(θx)|p′ = σl. Then θ is reducible.

8

- Otherwise, θ(t|p) = σl. Then t|p and l are unifiable, hence t is not strongly
irreducible.

Example 6. Let t = f(x), θ = (x/g(y)), and R = {g(a)→ b}. Thus t is strongly
irreducible, θ is irreducible, and θt = f(g(y)) is irreducible. Note that θt is not
strongly irreducible.

Before introducing two families of derivations, we show in Example 7 that
performing the completion, as presented in Section 1.2, with a non-right-linear
TRS may introduce copying clauses, and some innermost descendants may be
missing.

Example 7. Let R = {f(x) → g(h(x), h(x)), i(x) → g(x, x), h(a) → b}, and
Prog be the initial non-copying program:
Prog = {P (i(x)) ← Q1(x). Q1(a) ← . P (f(x)) ← Q2(x). Q2(a) ←}. We start
with Prog′ = ∅. The completion procedure computes the critical pairs:

1. P (g(x, x))← Q1(x) and add it into Prog′,

2. P (g(h(x), h(x)))← Q2(x), which could be simplified into:
Q1(h(x))← Q2(x), which is added into Prog′,

3. Q1(b)←, which is added into Prog′.

No more critical pairs are detected, thus all critical pairs are convergent in
Prog′′ = Prog∪Prog′. However P (f(a))→R P (g(h(a), h(a)))→R P (g(b, h(a)))
by an innermost derivation, whereas P (f(a)) ∈Mod(Prog) and P (g(b, h(a))) 6∈
Mod(Prog′′).
Actually, the clause P (g(x, x))← Q1(x) prevents the reduction of P (g(b, h(a)))
and consequently, it is impossible to get the set of all innermost-descendants up
to now. Now, we introduce two families of derivations, i.e. NC and SNC, which
allow us to compute every innermost descendant. For an atom H, Varmult(H)
denotes the set of the variables that occur several times in H. For instance,
Varmult(P (f(x, y), x, z)) = {x}.

Definition 6. Let A be an atom (A may contain variables).
The step A ;[H←B,σ] G is NC (resp. SNC7) if for all x ∈ V armult(H), σx is
irreducible (resp. strongly irreducible) by R.
A derivation is NC (resp. SNC) if all its steps are.

Remark 1.

- SNC implies NC.

- If the clause H ← B is non-copying, then the step A ;[H←B,σ] G is SNC
(and NC).

Example 8. Consider the clause P (g(x, x)) ← Q(x) and R = {h(a) → b}. The
step P (g(h(y), h(y))) ;[(x/h(y)] Q(h(y)) is NC (h(y) is irreducible), but it is not
SNC (h(y) is not strongly irreducible).

7 NC stands for Non-Copying. SNC stands for Strongly Non-Copying.

9

Lemma 4. If A →[H←B,σ] G is SNC and ∀x ∈ V armult(H), ∀y ∈ V ar(σ(x)),
θy is irreducible, then θA→[H←B,θ.σ] θG is NC.

Proof. Let x ∈ V armult(H). Then σx is strongly irreducible. From Lemma 3,
θ.σ(x) is irreducible. Therefore θA→[H←B,θ.σ] θG is NC.

Lemma 5. If σ′A ;[H←B,γ] G is NC, then A ;[H←B,θ] G
′ is NC and there

exists a substitution α s.t. αG′ = G and α.θ = γ.σ′.

Proof. From the well-known resolution properties, we get A ;[H←B,θ] G
′ and

there exists a substitution α s.t. αG′ = G and α.θ = γ.σ′.
Now, if A ;[H←B,θ] G

′ is not NC, then there exists x ∈ V armult(H) s.t. θx is
reducible. Then γx = γ.σ′(x) = α.θ(x) is reducible. Therefore σ′A ;[H←B,γ] G
is not NC, which is impossible.

Let us now define a subset of Mod(Prog).

Definition 7. Let Prog be a CS-program and R be a rewrite system.
ModRNC(Prog) is composed of the ground atoms A such that there exists a NC
derivation A;∗ ∅.

Remark 2.

- ModRNC(Prog) ⊆Mod(Prog).

- If Prog is non-copying, then ModRNC(Prog) = Mod(Prog).

Example 9. Let Prog = {P (f(x), f(x))← Q(x). Q(a)← . Q(b)← .} and R =
{a→ b}. P (f(a), f(a)) 6∈ModRNC(Prog), hence ModRNC(Prog) 6= Mod(Prog).

Theorem 4. Let Prog be a normalized CS-program and R be a left-linear rewrite
system. If all critical pairs are convergent by SNC derivations, ModRNC(Prog)
is closed under innermost rewriting by R, i.e.

(A ∈ModRNC(Prog) ∧A→in,∗
R A′) =⇒ A′ ∈ModRNC(Prog)

Proof. Let A ∈ ModRNC(Prog) s.t. A →in
l→r A

′. Then A|i = C[σ(l)] for some
i ∈ IN, σ is irreducible, and A′ = A[i← C[σ(r)].

Since A ∈ ModRNC(Prog), A ;∗ ∅ by a NC derivation. Since Prog is nor-
malized, resolution consumes symbols in C one by one, thus G′′0=A;∗ G′′k ;∗ ∅
by a NC derivation, and there exists an atom A′′ = P (t1, . . . , tn) in G′′k and j
s.t. tj = σ(l) and the top symbol of tj is consumed (or tj disappears) during the
step G′′k ; G′′k+1.

Since tj is reducible by R and A ∈ ModRNC(Prog), tj = σ(l) admits only
one antecedent in A. Then A′ ;∗ G′′k [A′′ ← P (t1, . . . , σ(r), . . . , tn)] by a NC
derivation (I).

Consider new variables x1, . . . , xn s.t. {x1, . . . , xn} ∩ V ar(l) = ∅, and let us
define the substitution σ′ by ∀i, σ′(xi) = ti and ∀x ∈ V ar(l), σ′(x) = σ(x).
Then σ′(P (x1, . . . , xj−1, l, xj+1, . . . , xn)) = A′′.

From G′′k ;∗ ∅ we can extract the sub-derivation Gk = A′′ ;γk Gk+1 ;γk+1

Gk+2 ;∗ ∅, which is NC. From Lemma 5, there exist a positive integer u > k,

10

a NC derivation G′k = P (x1, . . . , l, . . . , xn) ;∗θ G
′
u, and a substitution α s.t.

αG′u = Gu, α.θ = γu−1.γk.σ
′, G′u is flat, and for all i, k < i < u implies

G′i is not flat. In other words, there is a critical pair, which is assumed to be
convergent by a SNC derivation. Therefore θ(G′k[l ← r]) →∗ G′u by a SNC
derivation.

Let us write γ = γu−1.γk. If there exist a clause H ← B used in this
derivation, and x ∈ V armult(H) s.t. α.θ(x) is reducible, then there exist i and
p s.t. α.θ(x) = γ.σ′(x) = γ(ti|p) (because σ is irreducible). Note that γ is a
unifier, then γx = γ(ti|p). Therefore γx = γ(ti|p) = γ.σ′(x) = α.θ(x), which is
reducible. This is impossible because x ∈ V armult(H) and Gk ;∗γ Gu is a NC
derivation.

Consequently, from Lemma 4, α.θ(G′k[l ← r]) →∗ α(G′u) = Gu ;∗ ∅
by a NC derivation. Note that α.θ(G′k[l ← r]) = γ.σ′(P (x1, . . . , r, . . . , xn)) =
γ(P (t1, . . . , σ(r), . . . , tn)). Then γ(P (t1, . . . , σ(r), . . . , tn)) ;∗ ∅ by a NC deriva-
tion. From Lemma 5 we get:
P (t1, . . . , σ(r), . . . , tn) ;∗ ∅ by a NC derivation. Considering Derivation (I)
again, we get A′ ;∗ G′′k [A′′ ← P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅ by a NC deriva-
tion. In other words, A′ ∈ModRNC(Prog).

By trivial induction, the proof can be extended to the case of several rewrite
steps.

In the following result, we consider an initial non-copying CS-program Prog,
and a possibly copying program Prog′ composed of the CS-clauses added by
the completion process. The normalization function norm makes critical pairs
convergent by SNC derivations, provided the simplification step is achieved only
if it is SNC.

Theorem 5. Let R be a left-linear rewrite system and Prog′′ = Prog ∪ Prog′
be a normalized CS-program s.t. Prog is non-copying and all critical pairs of
Prog′′ are convergent by SNC derivations. If A ∈ Mod(Prog) and A →∗R A′

with an innermost strategy, then A′ ∈Mod(Prog′′).

Proof. Since Prog is non-copying, Mod(Prog) = ModRNC(Prog). Then A ∈
ModRNC(Prog), and since Prog ⊆ Prog′′ we have A ∈ ModRNC(Prog′′). From
Theorem 4, A′ ∈ ModRNC(Prog′′), and since ModRNC(Prog′′) ⊆ Mod(Prog′′),
we get A′ ∈Mod(Prog′′).

Example 10.
Let us focus on the critical pair given in Example 7 Item 2 i.e. P (g(h(x), h(x)))←
Q2(x). Adding the clause Q1(h(x)) ← Q2(x) makes the clause convergent in
Prog′′ (in Example 7), but not convergent by a SNC derivation. Indeed (just
here, we add primes to avoid conflict of variables) P (g(h(x′), h(x′))) ;[x/h(x′)]

Q1(h(x′)) ;[x/x′] Q2(x′). But the step P (g(h(x′), h(x′))) ;[x/h(x′)] Q1(h(x′)) is
not SNC. Consequently, one has to normalize P (g(h(x), h(x))) ← Q2(x) in an
SNC way. For instance, P (g(h(x), h(x))) ← Q2(x) can be normalized into the
following clauses: P (g(x, y))← Q3(x, y). Q3(h(x), h(x))← Q2(x).
After adding these clauses, new critical pairs are detected, and the clauses
Q3(b, h(x))← Q2(x). Q3(h(x), b)← Q2(x). Q3(b, b)← . will be added.

11

So, the final CS-program is Prog′′ = Prog ∪
{P (g(x, x)) ← Q1(x). Q3(b, b) ← . P (g(x, y)) ← Q3(x, y). Q3(h(x), h(x)) ←
Q2(x). Q3(b, h(x))← Q2(x). Q3(h(x), b)← Q2(x). }.
Thus P (g(b, h(a))) ∈Mod(Prog′′).

One can apply this approach to a well-known problem: the Post Correspon-
dence Problem.

Example 11. Consider the instance of the Post Correspondence Problem (PCP)
composed of the pairs (ab, aa) and (bba, bb). To encode it by tree languages, we
see a and b as unary symbols, and introduce a constant 0.
Let R = {Test(x) → g(x, x), g(0, 0) → True, g(a(b(x)), a(a(y))) → g(x, y),
g(b(b(a(x))), b(b(y))) → g(x, y)}, and let I = {Test(t) | t ∈ T{a,b,0}, t 6= 0} be
the initial language generated by P0 in Prog = {P0(Test(z))← P1(z). P1(a(z))←
P2(z). P1(b(z))← P2(z). P2(a(z))← P2(z). P2(b(z))← P2(z). P2(0)←}.

Thus, this instance of PCP has at least one solution iff True is reachable by R
from I. Note that R is not right-linear. However, each descendant is innermost,
and from Theorem 5 it is recognized by the CS-program obtained by completion:
compR(Prog) = Prog ∪P0(g(x, x))← P1(x). P0(g(x, y))← P4(x, y). P4(x, a(x))← P2(x).

P0(g(x, y))← P5(x, y). P5(x, b(x))← P2(x). P0(g(x, y))← P6(x, y).
P6(x, b(y))← P7(x, y). P7(x, a(x))← P2(x).

Note that P0(True) 6∈ Mod(compR(Prog)), which proves that this instance of
PCP has no solution.

3 Getting rid of copying clauses

In this section, we propose a process (see Definition 8) that transforms a copying
CS-clause into a set of non-copying ones. Forcing termination of this process may
lead to an over-approximation. In that way, even if the TRS is not right-linear
and consequently copying clauses may be generated during the completion pro-
cess, we can get rid of them as soon as they appear. Thus, the final CS-program
is non-copying, and Theorem 2 applies. Therefore, an over-approximation of the
set of all descendants can be computed.

For instance, let Prog = {P (f(x, x)) ← Q(x). Q(s(x)) ← Q(x). Q(a) ←}.
Note that the language generated by P is {f(sn(a), sn(a)) | n ∈ N}. We introduce
a new binary predicate symbol Q2 that generates the language {(t, t) | Q(t) ∈
Mod(Prog)}, and we transform the copying clause P (f(x, x)) ← Q(x) into a
non-copying one as follows: P (f(x, y))← Q2(x, y). Now Q2 can be defined by the
clauses Q2(s(x), s(x))← Q(x) and Q2(a, a)←. Unfortunately Q2(s(x), s(x))←
Q(x) is copying. Then using the same idea again, we transform it into the non-
copying clause Q2(s(x), s(y))← Q2(x, y). The body of this clause uses Q2, which
is already defined. Thus the process terminates with Prog′ = {P (f(x, y)) ←
Q2(x, y). Q2(s(x), s(y)) ← Q2(x, y). Q2(a, a) ← . Q(s(x)) ← Q(x). Q(a) ←}.

12

Note that Prog′ is non-copying and generates the same language as Prog. The
clauses that define Q are useless in Prog′, but in general it is necessary to keep
them.

Now, let us formally define the uncopying process.

Definition 8. Let Prog be a CS-program containing copying clauses. Thus,
uncopying(Prog) is a non-copying CS-program obtained from Prog as described
below:

Input: Prog that may contain copying clauses
Output: uncopying(Prog) that does not contain copying clauses anymore

1: while There exists a copying clause P (
−→
t) ← Q1(−→u1), . . . , Qn(−→un) in Prog

do
2: Let V ar(

−→
t) = {x1, . . . , xk} be the set of variables occurring in

−→
t

3: Let m1, . . . ,mk ∈ N be integers such that xi occurs exactly mi times in
−→
t

// Create −→vj which will replace −→uj in the uncopied clause
4: for all j ∈ {1, ..., n} do
5: let Ij the set of variables indices of −→uj occurring in

−→
t

6: maxj = Max

(
∪
i∈Ij
{mi}

)
7: Given an integer l, −→uj l denotes a renaming of variables occurring in −→uj

such that −→uj l = 〈xl1, . . . , xlm〉 with −→uj = 〈x1, . . . , xm〉
8: −→vj = −→uj1 . . .

−−−→
u
maxj

j , i.e. −→vj is the concatenation of −→uj1, . . . ,−→ujmaxj

9: end for

// Create the terms
−→
t′ that will replace

−→
t in the uncopied clause

10: Let
−→
t′ obtained from

−→
t by replacing for each j ∈ {1, . . . , k}, the different

occurrences of xj by x1j , . . . , x
mj

j

11: UncopiedClause := P (
−→
t′)← Qmax1

1 (−→v1), . . . , Qmaxn
n (−→vn)

12: Prog := (Prog \ {P (
−→
t)← Q1(−→u1), . . . , Qn(−→un)}) ∪ {UncopiedClause}

// Add the definitions of new predicates
13: for all Qmaxi

i ,maxi 6= 1 do
14: if Qmaxi

i not defined then

15: for all { Qi(
−→
tj)← Bj} in Prog do

16: Prog := Prog ∪ {Qmaxi
i (

−→
tj . . .

−→
tj)← Bj}

17: end for
18: end if
19: end for

// Introduction of new definitions may generate new clauses to uncopy
20: end while
21: return Prog

13

Remark 3. If Qi has p arguments, then Qmaxi
i has maxi × p arguments, and

L(Qmaxi
i) =

 −→t . . .−→t︸ ︷︷ ︸
maxi times

| −→t ∈ L(Qi)

. Then L(Q1
i) = L(Qi) and8 L((Qxi)y) =

L(Qx×yi). Thus we will confuse Q1
i with Qi, and (Qxi)y with Qx×yi .

Now, we give some examples of completion (Definition 4) supplied with
uncopying.

Example 12.
Let R={f(x)→ g(x, x), a→ b}, Prog0 ={P (f(x))← Q1(x). Q1(a)←}. Prog0
is a normalized non-copying CS-Program and R is a non-right-linear rewrite
system. There are 2 critical pairs, P (g(x1, x1)) ← Q1(x1). and Q1(b) ←. To
make the critical pairs convergent, we add them into the program and we get

Prog1 = Prog0 ∪ {P (g(x1, x1))← Q1(x1). Q1(b)←}
Prog1 contains the copying clause P (g(x1, x1))← Q1(x1). Applying Definition 8,
at line 2, we get n = 1, m1 = 2. So, at line 11, UnfoldClause = P (g(x11, x

2
1)) ←

Q2
1(x11, x

2
1). From Q1(a) ← and Q1(b) ← we get respectively Q2

1(a, a) ← and
Q2

1(b, b) ←. Finally uncopying(Prog1) = Prog0 ∪ {Q1(b) ← . P (g(x11, x
2
1)) ←

Q2
1(x11, x

2
1). Q2

1(a, a)← . Q2
1(b, b)←}. So, uncopying(Prog1) is a normalized non-

copying CS-Program.
Let Prog2 = uncopying(Prog1). Now, there are 2 non-convergent critical

pairs, Q2
1(a, b)← and Q2

1(b, a)←. If we add them to Prog2, we get a normalized
non-copying CS-Program, all critical pairs are convergent. Applying Theorem 2,
Mod(Prog2) is closed by rewriting.

Remark 4. If at least one Qmaxi
i is not defined and there is a clause Qi(

−→
tj)← Bj

in Prog such that
−→
tj is not ground, then the algorithm will generate new copying

clauses.

Example 13. Let Prog = {P (c(x, x)) ← P (x).(1) P (a) ← .(2)}. Prog is a nor-
malized, copying CS-Program. Clause (1) is copying, we apply uncopying and add
{P (c(x, x′))← P 2(x, x′).(3) P 2(a, a)← .(4) P 2(c(x, x′), c(x, x′))← P 2(x, x′).(5)}
to Prog. Clause (5) is copying. Thus, the same process is performed and the
clauses {P 2(c(x1, x

′
1), c(x2, x

′
2))← P 4(x1, x

′
1, x2, x

′
2).(6) P 4(a, a, a, a)← .(7)

P 4(c(x1, x
′
1), c(x2, x

′
2), c(x1, x

′
1), c(x2, x

′
2))← P 4(x1, x

′
1, x2, x

′
2).(8)} are added to

Prog. Unfortunately Clause (8) is copying. The process does not terminate, con-
sequently we will never get a program without copying clauses.

To force termination while getting rid of all copying clauses, we fix a positive
integer UncopyingLimit. If we need to generate a predicate Qx where x >
UncopyingLimit we cut Qx into Qx1 , . . . , Qxn with Σ

i∈[1,n]
xi = x.

8 If the loop while is run several times, predicate symbols of the form (Qx
i)y may

appear.

14

Example 14. Consider Example 13 again, and let UncopyingLimit = 4. Clause
(8) is copying. Applying the process would generate the clause
P 4(c(x1, x

′
1), c(x2, x

′
2), c(x3, x

′
3), c(x4, x

′
4))← P 8(x1, x

′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4)

However UncopyingLimit is exceeded. So, we cut P 8 and obtain
P 4(c(x1, x

′
1), c(x2, x

′
2), c(x3, x

′
3), c(x4, x

′
4))

← P 4(x1, x
′
1, x2, x

′
2), P 2(x3, x

′
3), P 2(x4, x

′
4).(9)

Predicates P 4 and P 2 have been defined previously in Prog, so we do not need
to add more clauses to do it.

Finally, the CS-program uncopying(Prog) includes the uncopying clauses (2),
(3), (4), (6), (7) and (9). Recall that L(P 8) is supposed to be defined so that

L(P 8) = {−→t . . .−→t︸ ︷︷ ︸
8 times

| −→t ∈ L(P)}. Then replacing P 8(x1, x
′
1, x2, x

′
2, x3, x

′
3, x4, x

′
4)

by P 4(x1, x
′
1, x2, x

′
2), P 2(x3, x

′
3), P 2(x4, x

′
4) in the clause-body generates the set

{−→t . . .−→t︸ ︷︷ ︸
4 times

.
−→
t′ .
−→
t′ .
−→
t′′ .
−→
t′′ | −→t ,

−→
t′ ,
−→
t′′ ∈ L(P)} ⊂ L(P 8), which leads to an over-

approximation. For example P 4(c(a, a), c(a, a), c(c(a, a), c(a, a)), c(a, a)) is in
Mod(uncopying(Prog)) but not in Mod(Prog).

4 Further Work

In this paper, we have shown that the non-regular approximation technique by
means of CS-programs can also deal with left-linear non-right-linear rewrite sys-
tems. Naturally, the question that still arises is: can this technique be extended to
non-left-linear rewrite systems. From a theoretical point of view, applying a non-
left-linear rewrite rule amounts to compute the intersection of several languages
of sub-terms, i.e. the intersection of CS-programs. Unfortunately, it is known
that the class of synchronized tree languages (i.e. the languages recognized by
CS-programs) is not closed under intersection. In other words, except for partic-
ular cases, such intersection cannot be computed in an exact way. However, it
could be over-approximated by a CS-program. We are studying this possibility.

References

1. Y. Boichut, B. Boyer, Th. Genet, and A. Legay. Equational Abstraction Refinement
for Certified Tree Regular Model Checking. In ICFEM, volume 7635 of LNCS,
pages 299–315. Springer, 2012.

2. Y. Boichut, J. Chabin, and P. Réty. Over-approximating descendants by synchro-
nized tree languages. In RTA, volume 21 of LIPIcs, pages 128–142, 2013.

3. Y. Boichut, J. Chabin, and P. Réty. Erratum of over-approximating descendants
by synchronized tree languages. Technical report, LIFO, Université d’Orléans,
http://www.univ-orleans.fr/lifo/Members/rety/publications.html#erratum, 2015.

4. Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Finer is Better:
Abstraction Refinement for Rewriting Approximations. In RTA, volume 5117 of
LNCS, pages 48–62. Springer, 2008.

15

5. Y. Boichut and P.-C. Héam. A Theoretical Limit for Safety Verification Techniques
with Regular Fix-point Computations. Information Processing Letters, 108(1):1–2,
2008.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regu-
lar (Tree) Model Checking. Journal on Software Tools for Technology Transfer,
14(2):167–191, 2012.

7. Th. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In
CADE, volume 1831 of LNAI, pages 271–290. Springer-Verlag, 2000.

8. V. Gouranton, P. Réty, and H. Seidl. Synchronized Tree Languages Revisited and
New Applications. In FoSSaCS, volume 2030 of LNCS, pages 214–229. Springer,
2001.

9. J. Kochems and C.-H. Luke Ong. Improved Functional Flow and Reachability
Analyses Using Indexed Linear Tree Grammars. In RTA, volume 10 of LIPIcs,
pages 187–202, 2011.

10. S. Limet and P. Réty. E-Unification by Means of Tree Tuple Synchronized Gram-
mars. Discrete Mathematics and Theoritical Computer Science, 1(1):69–98, 1997.

11. S. Limet and G. Salzer. Proving Properties of Term Rewrite Systems via Logic
Programs. In RTA, volume 3091 of LNCS, pages 170–184. Springer, 2004.

12. Sébastien Limet and Gernot Salzer. Tree Tuple Languages from the Logic Pro-
gramming Point of View. Journal of Automated Reasoning, 37(4):323–349, 2006.

