
Transforming
Prefix-Constrained or

Controlled Rewrite Systems

Nirina Andrianarivelo, Vivien Pelletier, Pierre Réty
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Abstract

We present two techniques for transforming any prefix-constrained and any controlled term rewrite

system into an ordinary rewrite system. We prove that both transformations preserve the rewrite com-

putations, and preserve termination. In this way, prefix-constrained rewriting and controlled rewriting

can be run, and termination can be checked, using the usual tools for ordinary rewriting.

1 Introduction
Term rewriting is a rule-based formalism that can be used to study properties of functional
programs, security protocols, musical rhythmics and so on. More generally, it provides a fi-
nite abstraction of a system whose configurations are represented by ranked terms. In this
framework, to ensure the termination of rewrite computations, it is often necessary to restrict
the possible rewrite positions, using strategies, or by allowing only some redex positions. In
context-sensitive rewriting [12], some arguments of a function symbol may be defined as being
non-rewritable. Prefix-constrained rewriting [10] is an extension of context-sensitive rewrit-
ing, where rewritable positions are defined by a finite string automaton that indicates the
allowed prefixes. Controlled rewriting [9] is an extension of prefix-constrained rewriting, where
rewritable positions are defined by a finite tree automaton that considers the entire term (i.e.
not only prefixes).

A possible way to check termination and to work with these restricted rewrite techniques,
consists in transforming them into ordinary rewriting having the same computations, and use
well-known results and tools over ordinary rewriting. However, it has already been done only
for context-sensitive rewriting [5, 6]. On the other hand, a general approach for translating so-
called programmable strategies into ordinary rewriting has been presented in [3]. However the
combinators considered in that paper to define strategies can encode neither prefix-constrained
nor controlled rewriting.

In this paper, we transform any prefix constrained term rewrite system (pCTRS) and any
controlled term rewrite system (cntTRS) R into an ordinary term rewrite system R′ that com-
putes the same descendants. By introducing sorts and thanks to the persistence of termination
when adding/removing sorts [13, 8], we prove that this transformation preserves termination,
i.e. R is terminating if and only if R′ is terminating. However, in the case of cntTRSs, we
assume that R is non-duplicating for proving that the termination of R implies the termination
of R′. The converse holds without any assumption. The transformed rewrite system R′ can
be implemented using usual tools providing rewrite rules, like Tom [2], and termination can
be studied using well-known termination analysis techniques and the corresponding tools, like
AProVE [7] and TTT2 [11].

The paper is organized as follows. The preliminaries are introduced in Section 2. Sec-
tion 3 presents a transformation of any pCTRS into an ordinary TRS. In the particular case of
context-sensitive rewriting, a comparison with [6] is given in Section 3.3. Section 4 presents a
transformation of any cntTRS into an ordinary TRS. The relationship with [9] is discussed in
Section 4.3.
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2 Preliminaries
Let us recall general notions of rewriting. For details see [1].

Term and Substitution. Consider a finite ranked alphabet Σ and a set of variables Var.
Each symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of first-order term,
position and substitution are defined as usual. Given σ and σ′ two substitutions, σ ◦ σ′ denotes
the substitution such that for any variable x, σ ◦ σ′(x) = σ(σ′(x)). T (Σ) denotes the set of
ground terms (without variables) over Σ. For a term t, Var(t) is the set of variables of t, Pos(t)
is the set of positions of t, and ε is the root position. For p ∈ Pos(t), t(p) is the symbol of
Σ∪Var occurring at position p in t, and t|p is the subterm of t at position p. For p, p′ ∈ Pos(t),
p < p′ means that p occurs in t strictly above p′. The term t is linear if each variable of t occurs
only once in t. The term t[t′]p is obtained from t by replacing the subterm at position p by t′.

Term Rewrite System (TRS). A rewrite rule is an oriented pair of terms, written l→ r.
We always assume that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a
finite set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The rewrite
relation →R is defined as follows: t →R t′ if there exist a non-variable position p ∈ Pos(t), a
rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ = t[θ(r)]p (also denoted t →p

R t′).
→+
R denotes the transitive closure of →R, and →∗R denotes the reflexive-transitive closure of

→R. t′ is a descendant of t if t →∗R t′. If I is a set of ground terms, R∗(I) denotes the set of
descendants of elements of I. The rewrite rule l → r is left (resp. right) linear if l (resp. r) is
linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right) linear. R is linear
if R is both left and right linear. l→ r is said collapsing if r is a variable.

String Automaton. Given an alphabet Σ, the set of strings is denoted by Σ∗, and ε
denotes the empty string. Symbol ’.’ denotes the concatenation. A finite string automaton is
a 5-tuple A = (Σ, Q,QI , Qf ,∆) where Q is a set of states, QI ⊆ Q is the set of initial states,
Qf ⊆ Q is the set of final states, and ∆ ⊆ Q × Σ ×Q is the set of transitions. The transition
relation 7→∆ between elements of Q × Σ∗ is defined as follows: for q, q′ ∈ Q, a ∈ Σ, w ∈ Σ∗,
(q, a.w) 7→∆ (q′, w) iff (q, a, q′) ∈ ∆. The reflexive-transitive closure of 7→∆ is written 7→∗∆. The
language recognized by A is L(A) = {w ∈ Σ∗ | ∃qI ∈ QI , ∃qf ∈ Qf , (qI , w) 7→∗∆ (qf , ε)}.

Tree Automaton [4]. A (bottom-up) finite tree automaton over a signature Σ is a 4-
tuple A = (Σ, Q,Qf ,∆) where Q is a set of states, Qf ⊆ Q is the set of final states, and
∆ is a set of transitions of the form f(q1, . . . , qn) → q where f ∈ Σ and q1, . . . , qn, q ∈
Q. A run of A on a term t ∈ T (Σ) is a mapping α from Pos(t) into Q s.t. for all
p ∈ Pos(t), t(p)(α(p.1), ..., α(p.n)) → α(p) is in ∆, where the arity of the symbol t(p) is n.
The run α is successful (or accepting) if α(ε) ∈ Qf . The set of successful runs of A on t is
denoted sruns(A, t). The language recognized by A is L(A) = {t ∈ T (Σ) | sruns(A, t) 6= ∅}.

Selection Automaton [9]. A selection automaton A is a 5-tuple (Σ, Q,Qf , S,∆) where
(Σ, Q,Qf ,∆) is a tree automaton denoted ta(A) and S is a set of states of Q called selection
states. Given a term t ∈ T (Σ), the set of positions of t selected by A is defined as

sel(A, t) = {p ∈ Pos(t) | ∃α ∈ sruns(ta(A), t), α(p) ∈ S}
Context-Sensitive Term Rewrite System (CS-TRS) [12]. A context-sensitive rewrite

relation is a sub-relation of the ordinary rewrite relation in which rewritable positions are
indicated by specifying arguments of function symbols. A mapping µ : Σ→ P (IN) is said to be
a replacement map (or Σ-map) if µ(f) ⊆ {1, . . . , ar(f)} for all f ∈ Σ. A context-sensitive term
rewriting system (CS-TRS) is a pair R = (R,µ) composed of a TRS and a replacement map.
The set of µ-replacing positions1 Posµ(t) (⊆ Pos(t)) is recursively defined: Posµ(t) = {ε} if t
is a constant or a variable, otherwise Posµ(f(t1, . . . , tn)) = {ε} ∪ {i.p | i ∈ µ(f), p ∈ Posµ(ti)}.
The rewrite relation induced by a CS-TRSR is defined: t ↪→R t′ if t→p

R t
′ for some p ∈ Posµ(t).

1Also called positions allowed by µ.
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Example 1. Let Σ = {f\2, g\2, a\0, b\0} and R = {a → b} with µ(f) = {1} and µ(g) = {2}.
The positions allowed by µ in the term f(a, a) are written in bold. Then the only derivation
issued from this term is f(a, a) ↪→R f(b, a). On the other hand, consider t = f(g(a,a), a).
Then the only derivation issued from this term is f(g(a, a), a) ↪→R f(g(a, b), a).

Prefix Constrained Term Rewrite System (pCTRS) [10]. Prefix constrained rewrit-
ing allows rewrite steps only at the positions p of t s.t. the path from the root to t and p
belongs to a given regular string language. More precisely, consider the set of directions
Dir(Σ) = {〈g, i〉 | g ∈ Σ, 1 ≤ i ≤ ar(g)}. For a ground term t = g(t1, . . . , t(ar(g))) ∈ T (Σ)
and a position p, path(t, p) ∈ Dir(Σ)∗ is defined recursively by:

path(g(t1, . . . , t(ar(g))), ε) = ε
path(g(t1, . . . , t(ar(g))), i.p) = 〈g, i〉.path(ti, p) with 1 ≤ i ≤ ar(g)

A prefix constrained rewrite system is a finite set R of prefix constrained rewrite rules of
the form L : l → r s.t. L ⊆ Dir(Σ)∗ is a regular string language over Dir(Σ), l ∈ T (Σ,X )\X ,
and r ∈ T (Σ, var(l)). A term t is rewritten to t′ in one step by a pCTRS R, denoted by
t ↪→R t′, if there exist a prefix-constrained rewrite rule L : l → r in R, a position p ∈ Pos(t)
s.t. path(t, p) ∈ L, and a substitution σ s.t. t|p = σ(l) and t′ = t[σ(r)]p. The reflexive-transitive
closure of ↪→R is denoted by ↪→∗R.

Example 2. Let Σ = {f\2, g\2, a\0, b\0} and R = {(〈f, 1〉.〈g, 2〉)∗ : a → b}. Let t =
f(g(a,a), a). Note that t(1.2) = a (in bold in t) and path(t, 1.2) = 〈f, 1〉.〈g, 2〉 ∈ (〈f, 1〉.〈g, 2〉)∗.
Then this position can be reduced by prefix constrained rewriting, i.e. t = f(g(a,a), a) ↪→R

f(g(a, b), a), whereas the other occurrences of a are not reducible.
Note that the term f(a, a) is not reducible by the pCTRS R, whereas it is reducible by the
CS-TRS of Example 1. However the pCTRS R1 = {(〈f, 1〉|〈g, 2〉)∗ : a→ b} is equivalent to the
CS-TRS of Example 1.

Controlled Term Rewrite System (cntTRS) [9]. A controlled rewrite system R is a
finite set of controlled rewrite rules of the form A : l → r, composed of a selection automaton
A and a rewrite rule l → r. A term t rewrites into t′ in one step by a cntTRS R, denoted
t ↪→R t′, if there exist a controlled rewrite rule A : l → r in R, a position p ∈ sel(A, t), and a
substitution σ s.t. t|p = σ(l) and t′ = t[σ(r)]p.

Example 3. Let Σ = {f\2, g\2, a\0, b\0}, R = {A : a→ b}, and A = (Σ, Q,Qf , S,∆) s.t. Q =
{q1, q2, qf}, Qf = {qf}, S = {q2}, and ∆ = {a→ q1, a→ q2, g(q1, q2)→ q1, f(q1, q1)→ qf}.

Let t = f(g(a, a), a). Using the transitions of ∆, we get the derivation f(g(a, a), a) →∗
f(g(q1, q2), q1) → f(q1, q1) → qf . Since qf ∈ Qf , this derivation defines a successful run α on
t. Note that α(1.2) = q2 ∈ S, then 1.2 is a reducible position. Then t = f(g(a, a), a) ↪→R

f(g(a, b), a). Note that t′ = f(g(a, a), b) is not reducible by R since there is no successful run
on t′. So, the position 1.2 is reducible in t but not in t′. In other words, with a cntTRS, the
reducibility of a position depends on the entire term, and not only on the symbols located above
the position (as with a pCTRS).

Remark. Context-sensitive rewriting is a particular case of prefix-constrained rewriting, which
is a particular case of controlled rewriting [10].

3 Transforming a pCTRS into a TRS
Given a pCTRS R = {Lk : lk → rk | 1 ≤ k ≤ n}, we assume that each language Lk ⊆ Dir(Σ)∗

is defined by a string automaton Ak = (Σ, Qk, QkI , Q
k
f ,∆

k) s.t. ∀k, k′ ∈ {1, . . . , n}, (k 6= k′ =⇒
Qk ∩Qk′ = ∅). Consequently, if k 6= k′ then QkI ∩Qk

′

I = Qkf ∩Qk
′

f = ∆k ∩∆k′ = ∅.
We write Q = ∪1≤k≤nQ

k, QI = ∪1≤k≤nQ
k
I , Qf = ∪1≤k≤nQ

k
f , ∆ = ∪1≤k≤n∆k. On the other

hand, we also view each state of Q as a unary symbol, and each transition δ = (q, 〈f, k〉, q′) of
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∆ as a symbol having the same arity as f . We want to transform a pCTRS R into an ordinary
TRS R′ that simulates the behavior of R.

Definition 4. Let R = {Lk : lk → rk | 1 ≤ k ≤ m} be a pCTRS over a signature Σ. The
corresponding TRS R′ over the signature Σ′ = Σ∪{top\1, j\1}∪Q∪∆ is R′ = R′1∪R′2∪R′3∪R′4,
where x, x1, . . . , xn are variables:

R′1 = {top(j(x))→ top(qI(x)) | qI ∈ QI}
R′2 = {q(f(x1, . . . , xn))→ δ(x1, . . . , q

′(xi), . . . , xn)) | δ = (q, 〈f, i〉, q′) ∈ ∆}
R′3 = {qf (lk)→ j(rk) | qf ∈ Qkf , (Lk : lk → rk) ∈ R}
R′4 = {δ(x1, . . . , j(xi), . . . , xn)→ j(f(x1, . . . , xi, . . . , xn)) | δ = (q, 〈f, i〉, q′) ∈ ∆}

To explain the transformation, let us consider a simplified version of R′ obtained by replacing
δ by f in R′2 and R′4 (δ is for preserving termination). Thus, if a state q appears at position p
in a term t′′ ∈ T (Σ′), this means that there is a path from the root of t′′ to position p that is
recognized by the automaton into the state q. Term t′′ is obtained from top(j(t)) by applying
one rule of R′1 and some rules of R′2 which move a state down using the automaton transitions.
If q ∈ Qf , a rewrite step of R can be applied, thanks to R′3, and q is replaced by j, which is a
kind of token. Then j goes up thanks to R′4. Symbol top is for marking the root of a term.

Remark. The number of rules in R′ is linear in the size of the global automaton, because
|R′| = |QI |+ |∆|+ |Qf |+ |∆| ≤ 2× (|Q|+ |∆|).

Theorem 5. Let t ∈ T (Σ). t ↪→∗R t′ if and only if top(j(t))→∗R′ top(j(t′)).

Example 6. Consider Example 2 again, where R = {(〈f, 1〉.〈g, 2〉)∗ : a → b}. The string
automaton A = (Dir(Σ), Q,QI , Qf ,∆) is defined by Dir(Σ) = {〈f, 1〉, 〈f, 2〉, 〈g, 1〉, 〈g, 2〉},
Q = {q, q′}, QI = {q}, Qf = {q},∆ = {(q, 〈f, 1〉, q′), (q′, 〈g, 2〉, q)}.
Let us write δ1 = (q, 〈f, 1〉, q′) and δ2 = (q′, 〈g, 2〉, q)}.
R′1 = {top(j(x))→ top(q(x))}, R′2 = {q(f(x, y))→ δ1(q′(x), y), q′(g(x, y))→ δ2(x, q(y))}, R′3 =
{q(a)→ j(b)}, R′4 = {δ1(j(x), y)→ j(f(x, y)), δ2(x, j(y))→ j(g(x, y))}

Let us consider t = f(g(a, a), a). The starting term is top(j(f(g(a, a), a))).
top(j(f(g(a, a), a))) →R′1

top(q(f(g(a, a), a))) →R′2
top(δ1(q′(g(a, a)), a)))

→R′2
top(δ1(δ2(a, q(a)), a)) →R′3

top(δ1(δ2(a, j(b)), a)) →R′4
top(δ1(j(g(a, b)), a))

→R′4
top(j(f(g(a, b), a))).

Thus f(g(a, a), a) ↪→R f(g(a, b), a).

Thanks to the following result, termination of a pCTRS could be proved using well-known
termination techniques for ordinary rewriting.

Theorem 7. R is terminating over Σ if and only if R′ is terminating over Σ′.

3.1 Proof of Theorem 5

Theorem 5 is obtained thanks to Corollary 11 and Lemma 13 below.

Notation. Given a term t, a position p ∈ Pos(t) and a symbol h, let t{h}p denote the term
obtained from t by replacing the symbol at position p by h, assuming that t(p) and h have the
same arity.

Lemma 8. Let t ∈ T (Σ), p = u1 . . . un ∈ Pos(t), and q0, qn ∈ Qk. For each i ∈ {1, . . . , n}, let
us write vi = u1 . . . ui, and v0 = ε. Then

(q0, path(t, p)) 7→∗δ1,...,δn∈∆k (qn, ε) ⇐⇒ q0(t)→∗R′2 t{δ1}v0 · · · {δn}vn−1 [qn(t|p)]p

Proof. See Appendix A.
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Lemma 9. Let t ∈ T (Σ), p = u1 . . . un ∈ Pos(t), qI ∈ QkI and qf ∈ Qkf . For each i ∈ {1, . . . , n},
let us write vi = u1 . . . ui, and v0 = ε.
If t→[p,lk→rk,σ] t

′ and (qI , path(t, p)) 7→∗δ1,...,δn∈∆k (qf , ε), then

top(j(t))→R′1
top(qI(t))

→∗R′2 top(t{δ1}v0 · · · {δn}vn−1 [qf (t|p)]p) = top(t{δ1}v0 · · · {δn}vn−1 [qf (σ(lk))]p)

→R′3
top(t{δ1}v0 · · · {δn}vn−1 [j(σ(rk))]p)

→∗R′4 top(j(t[σ(rk)]p)) = top(j(t′))

Proof. It comes from Lemma 8, and the form of the rules of R′3 and R′4.

Corollary 10. Let t ∈ T (Σ). If t ↪→R t
′ then top(j(t))→+

R′ top(j(t
′)).

Corollary 11. Let t ∈ T (Σ). If t ↪→∗R t′ then top(j(t))→∗R′ top(j(t′)).
Lemma 12. Let t ∈ T (Σ) and qI ∈ QkI .
If top(qI(t))→+

R′2∪R′3∪R′4
top(j(t′)), then ∃p ∈ Pos(t), t ↪→[p,lk→rk] t

′.

Proof. See Appendix B.

Lemma 13. Let t ∈ T (Σ). If top(j(t))→+
R′ top(j(t

′)), then t ↪→+
R t
′.

Proof. The derivation is composed of steps of the form top(j(ti)) →R′1
top(qi(ti)) →∗R′2∪R′3∪R′4

top(j(ti+1)) where qi ∈ QI . From Lemma 12, ti ↪→R ti+1.

3.2 Proof of Theorem 7

Theorem 7 is obtained thanks to Lemma 14 and Corollary 23 below.

Lemma 14. If R′ is terminating, then R is terminating.

Proof. By contrapositive. Assume that R is not terminating, i.e. there is an infinite deriva-
tion t0 ↪→R t1 ↪→R · · · tn ↪→R · · · . From Corollary 10, top(j(t0)) →+

R′ top(j(t1)) →+
R′

· · · top(j(tn))→+
R′ · · · , i.e. R′ is not terminating.

To prove the converse, we need to introduce sorts, and use the results of [13] about the
persistence of termination when adding or removing sorts.

Definition 15. We consider the set of sorts S = {sΣ, sQ, s>}. Let us define a sort attachment
of Σ′ on S defined by:

- ∀f ∈ Σ, f : sΣ × · · · × sΣ → sΣ

- ∀q ∈ Q, q : sΣ → sQ

- j : sΣ → sQ

- ∀δ = (q, 〈f, k〉, q′) ∈ ∆, δ : sΣ × · · · × sΣ × sQ × sΣ × · · · × sΣ → sQ, where sQ is the k-th
argument of the left-hand-side.

- top : sQ → s>

Let R′st be the TRS R′ viewed as a many-sorted TRS, considering that all variables occurring
in the rewrite rules of R′st are of sort sΣ. The sort attachment is consistent with R′ since for
each rule l→ r of R′st, terms l and r are well-sorted, and the sorts of l and r are equal.

Note that for all well-sorted terms t, t′ ∈ T (Σ′), t →R′ t
′ if and only if t →R′st

t′. On the
other hand, if t ∈ T (Σ′) is not well-sorted, then t is not reducible by R′st whereas t may be
reducible by R′. In other words, R′st works only with well-sorted terms.

Remark. If t ∈ T (Σ′) is of sort sΣ, then t ∈ T (Σ).

Since R′st does not include collapsing rules, Theorem 14 of [13] applies, i.e. termination is
persistent. Therefore:

Lemma 16. If R′ is not terminating, then R′st is not terminating.
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Lemma 17. Let t ∈ T (Σ′) be a well-sorted term of sort s>. Then t(ε) = top and ∀p ∈
Pos(t)\{ε}, t(p) 6= top.

Proof. Obvious.

Lemma 18. Let t ∈ T (Σ′) be a well-sorted term. If t→R′1
t′ then t is of sort s>.

Proof. Assume that the step t →R′1
t′ is done at position p ∈ Pos(t). Then t(p) = top and t|p

is of sort s>. If p 6= ε, according to the sort attachment, t is not well-sorted. Then necessarily
p = ε.

Lemma 19. Let t0 ∈ T (Σ′) be a well-sorted term. If t0 →+
R′st

tn by a derivation containing at

least one step by a rule of R′1, then for all i ∈ {0, . . . , n}, ti is of sort s> and ti(ε) = top.

Proof. There is some j ∈ {0, . . . , n−1} s.t. tj →R′1
tj+1. From the previous lemma, tj is of sort

s>. Since every rule of R′st is sort-preserving, for all i, ti is of sort s> and ti(ε) = top.

Lemma 20. R′2 ∪R′3 ∪R′4 is terminating.

Proof. Using the multiset path ordering (mpo) [1] with the precedence defined by:
∀q, q′ ∈ Q, ∀δ ∈ ∆, ∀f ∈ Σ, q ∼ q′ > δ ∼ f > j, and using that for each rule of R′3,
V ar(rk) ⊆ V ar(lk).

Lemma 21. Let t′0 ∈ T (Σ′) be a well-sorted term.
If the derivation t′0 →R′st

t′1 →R′st
t′2 →∗R′st . . . is infinite, then

- for all i ∈ IN, the sort of t′i is s>,

- and there exists an infinite subset I = {i1, i2, . . .} of IN s.t. ∀i ∈ I, ∃qi ∈ QI , ∃ti ∈
T (Σ), t′i = top(qi(ti)), and we have ti1 ↪→R ti2 ↪→R . . ., which is an infinite derivation by
R.

Proof. See Appendix C.

Corollary 22. If R′st is not terminating, then R is not terminating.

Thanks to Corollary 22 and Lemma 16, we get:

Corollary 23. If R is terminating, then R′ is terminating.

3.3 The context-sensitive case

A CS-TRS (R0, µ) may be viewed as a particular pCTRS R = {Lk : lk → rk | (lk → rk) ∈ R0},
where all languages Lk are the same (say L), and L is defined by the string automaton s.t.
Q = QI = Qf = {q} and ∆ = {(q, 〈f, k〉, q) | f ∈ Σ, k ∈ µ(f)}. Since q is the unique state,
we write 〈f, k〉 instead (q, 〈f, k〉, q), which denotes a transition δ ∈ ∆ considered as a symbol
having the same arity as f . Then the rewrite system obtained by our transformation writes
R′ = R′1 ∪R′2 ∪R′3 ∪R′4 (where x, x1, . . . , xn are variables):

R′1 = {top(j(x))→ top(q(x))}
R′2 = {q(f(x1, ..., xn))→ 〈f, k〉(x1, ..., q(xk), ..., xn)) | f ∈ Σ, k ∈ µ(f)}
R′3 = {q(lk)→ j(rk) | (lk → rk) ∈ R0}
R′4 = {〈f, k〉(x1, ..., j(xk), ..., xn)→ j(f(x1, ..., xk, ..., xn) | f ∈ Σ, k ∈ µ(f)}

Now, if we replace q by active, and j by mark, and δ = 〈f, k〉 by f , we get the second
transformation of [6], except that the rewrite rules for the additional symbols proper and ok are
missing. In other words, our transformation is simpler and we get fewer rules.

However, the transformation of [6], without the rules for proper and ok, does not preserve
termination, as the authors has shown using a counter-example. Let us try to run the same
counter-example, using our transformation.
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Example 24. [6] Let R0 = {f(x, g(x), y) → f(y, y, y), g(b) → c, b → c} with µ(f) = ∅ and
µ(g) = {1}. This CS-TRS is clearly terminating. Using our transformation, we get
R′ = {top(j(x))→ top(q(x)), q(g(x))→ 〈g, 1〉(q(x)), q(f(x, g(x), y))→ j(f(y, y, y)),
q(g(b))→ j(c), q(b)→ j(c), 〈g, 1〉(j(x))→ j(g(x))}.
Let us consider the term t = top(q(f(s, s, s))) with s = q(g(b)). Then:
top(q(f(s, s, s)))→R′ top(q(f(j(c), s, s)))→R′ top(q(f(j(c), 〈g, 1〉(q(b)), s)))
→R′ top(q(f(j(c), 〈g, 1〉(j(c)), s))) 6→R′ top(j(f(s, s, s)))→R′ top(q(f(s, s, s)))
The step 6→R′ is not possible anymore thanks to our use of δ=〈g, 1〉 instead of g. Consequently
this loop is not possible.

4 Transforming a cntTRS into a TRS

Given a cntTRS R = {Ak : lk → rk | 1 ≤ k ≤ m}, we assume that each selection automaton
Ak writes Ak = (Σ, Qk, Qkf , S

k,∆k) s.t. ∀k, k′ ∈ {1, . . . ,m}, (k 6= k′ =⇒ Qk ∩ Qk′ = ∅).
Consequently, if k 6= k′ then Qkf ∩Qk

′

f = Sk ∩ Sk′ = ∆k ∩∆k′ = ∅.
Let Q = ∪1≤k≤mQ

k, Qf = ∪1≤k≤mQ
k
f , S = ∪1≤k≤mS

k, ∆ = ∪1≤k≤m∆k, A = (Σ, Q,Qf , S,∆).

We consider two additional sets of states Q̄ and Q̂ disjoint from Q s.t. Q̄ ∩ Q̂ = ∅, and a
bijection from Q to Q̄ (resp. to Q̂) that associates a state q̄ ∈ Q̄ (resp. q̂ ∈ Q̂) to each q ∈ Q.
On the other hand, we also view each state of Q∪ Q̄∪ Q̂ as a unary symbol, and each transition
δ = (f(q1, . . . , qn)→ q) of ∆ as a symbol having the same arity as f .

We want to transform a cntCTRS R into an ordinary TRS R′ that simulates the behavior
of R.

Definition 25. Let R = {Ak : lk → rk | 1 ≤ k ≤ m} be a cntCTRS over a signature Σ. The

corresponding TRS R′ over the signature Σ′ = Σ∪Q∪ Q̄∪ Q̂∪∆∪{top\1}∪{j\1k | 1 ≤ k ≤ m}
is R′ = R′0 ∪ · · · ∪R′5 (where x, x1, . . . , xn are variables):

R′0 = {f(q1(x1), . . . , qn(xn))→ q(δ(q1(x1), . . . , qn(xn))) | δ = (f(q1, . . . , qn)→ q) ∈ ∆}
R′1 = {top(qf (x))→ top(q̂f (qf (x))) | qf ∈ Qf}

R′2 = {q̂(q(δ(x1, . . . , xn)))→ f(q̄1(x1), . . . , q̂k(xk), . . . , q̄n(xn))

∣∣∣∣ δ = (f(q1, . . . , qn)→ q) ∈ ∆,
k ∈ {1, . . . , n}, n ≥ 1}

R′3 = {q̄(q(δ(x1, . . . , xn)))→ f(q̄1(x1), . . . , q̄n(xn)) | δ = (f(q1, . . . , qn)→ q) ∈ ∆}
R′4 = {q̂(q(δ(x1, . . . , xn)))→ jk(f(q̄1(x1), . . . , q̄n(xn))) | δ = (f(q1, . . . , qn)→ q) ∈ ∆, q ∈ Sk}
R′5 = {jk(lk)→ rk | (Ak : lk → rk) ∈ R}

To explain the transformation, let us consider a simplified and non-terminating2 version of
R′, obtained by replacing δ by f in R′0, R′2, R′3 and R′4. The rules of R′0 achieve a run of A
on t ∈ T (Σ), and we get a term q(t′) marked with states. If the run is successful, i.e. q ∈ Qf ,
then top(q(t′)) →R′1

top(q̂(q(t′))). Symbols q̄ and q̂ are for removing the states in the whole
term (thanks to R′3 and R′2), except that q̂ will force a rewrite step by a rule of R (thanks to
R′4 and R′5) at exactly one position marked by a state of S, i.e. a rewrite position allowed by
the cntTRS R. Symbol top is for marking the root of a term.

Remark. For a given signature Σ, the number of rules in R′ is linear in the size of the global
automaton and the initial cntTRS, because |R′| = |R′0| + · · · + |R′5| ≤ |∆| + |Qf | + |∆| ∗
ArMax(Σ) + |∆|+ |∆|+ |R| ≤ (3 +ArMax(Σ)) ∗ |∆|+ |Q|+ |R|.

Theorem 26. Let t, t′ ∈ T (Σ).
t ↪→∗R t′ if and only if top(t)→∗R′ top(t′).

2In this case, R′
0, and consequently R′, are not terminating, even if R is. However, Theorem 26 still holds.
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Example 27. Let Σ = {f\2, a\0, b\0}, R = {A : a → b}, and A = (Σ, Q,Qf , S,∆) s.t.
Q = {q1, q2, qf}, Qf = {qf}, S = {q2}, ∆ = {δ1 : a → q1, δ2 : a → q2, δ3 : f(q1, q2) → qf}.
Note that L(A) = {f(a, a)}. We get:

R′0 = {a→ q1(δ1), a→ q2(δ2), f(q1(x1), q2(x2))→ qf (δ3(q1(x1), q2(x2)))}
R′1 = {top(qf (x))→ top(q̂f (qf (x)))}
R′2 = {q̂f (qf (δ3(x1, x2)))→ f(q̂1(x1), q̄2(x2)), q̂f (qf (δ3(x1, x2)))→ f(q̄1(x1), q̂2(x2))}
R′3 = {q̄1(q1(δ1))→ a, q̄2(q2(δ2))→ a, q̄f (qf (δ3(x1, x2)))→ f(q̄1(x1), q̄2(x2))}
R′4 = {q̂2(q2(δ2)→ j(a)}
R′5 = {j(a)→ b}

The only successful run α on f(a, a) satisfies α(1) = q1, α(2) = q2, α(ε) = qf , and recall
that S = {q2}. Then f(a, a) ↪→R f(a, b). This R-step can be simulated by R′ in this way:

• We start with the term top(f(a, a)).

• With a→ q1(δ1) ∈ R′0 we get top(f(q1(δ1), a)).

• With a→ q2(δ2) ∈ R′0 we get top(f(q1(δ1), q2(δ2))).

• With f(q1(x1), q2(x2))→ qf (δ3(q1(x1), q2(x2))) ∈ R′0 we get top(qf (δ3(q1(δ1), q2(δ2)))).

• With top(qf (x))→ top(q̂f (qf (x))) ∈ R′1 we get top(q̂f (qf (δ3(q1(δ1), q2(δ2)))).

• With (q̂f (qf (δ3(x1, x2)))→ f(q̄1(x1), q̂2(x2)) ∈ R′2 we get top(f(q̄1(q1(δ1)), q̂2(q2(δ2))).

• With q̂2(q2(δ2))→ j(a) ∈ R′4, we get top(f(q̄1(q1(δ1)), j(a))).

• With j(a)→ b ∈ R′5 we get top(f(q̄1(q1(δ1)), b)).

• With q̄1(q1(δ1))→ a ∈ R′3 we get top(f(a, b)).

Thus top(f(a, a))→+
R′0

top(qf (δ3(q1(δ1), q2(δ2))))→R′1
top(q̂f (qf (δ3(q1(δ1), q2(δ2))))

→R′2
top(f(q̄1(q1(δ1)), q̂2(q2(δ2)))→R′4

top(f(q̄1(q1(δ1)), j(a)))→R′5
top(f(q̄1(q1(δ1)), b))

→R′3
top(f(a, b)).

Thanks to the following results, termination of a cntTRS could be proved using well-known
termination techniques for ordinary rewriting.

Theorem 28. If R′ is terminating over Σ′, then R is terminating over Σ.

To prove the equivalence, an additional restriction is needed. R is said duplicating if there
is a rule Ak : lk → rk in R and a variable that has more occurrences in rk than in lk.

Theorem 29. Assume that R is non-duplicating. Then:
R is terminating over Σ if and only if R′ is terminating over Σ′.

4.1 Proof of Theorem 26

Theorem 26 is obtained thanks to Corollary 33 and Lemma 30 below.

Lemma 30. Let t ∈ T (Σ) and q ∈ Q.
t→∗R′0 q(t1) if and only if there exists a run α on t s.t. α(ε) = q.

Moreover
- if q̂(q(t1))→∗R′2 t2 ∧ ∃p ∈ Pos(t2), t2(p) ∈ Q̂, then p ∈ Pos(t) and t2(p) = ˆα(p).

- conversely, for all p ∈ Pos(t), there exists a derivation q̂(q(t1)) →∗R′2 t2 s.t. p ∈ Pos(t2) and

t2(p) = ˆα(p).

Proof. See Appendix D.
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Lemma 31. Let t ∈ T (Σ), p = u1 . . . un ∈ Pos(t), qf ∈ Qkf . For each i ∈ {1, . . . , n}, let us
write vi = u1 . . . ui, and v0 = ε.
If t→[p,lk→rk,σ] t

′ and there is a successful run α on t s.t. α(p) ∈ Sk, then (with qf ∈ Qf and
q = α(p))

top(t) = top(t[t|p]p)→∗R′0 top(t[q(t
′
1)]p)→∗R′0 top(qf (t1))

→R′1
top(q̂f (qf (t1)))

→∗R′2∪R′3 top(t[q̂(q(t
′
1))]p)

→R′4
.→∗R′3 top(t[jk(t|p)]p) = top(t[jk(σ(lk))]p)

→R′5
top(t[σ(rk)]p) = top(t′)

Proof. It comes from Lemma 30, and the form of the rules of R′1, R′4 and R′5.

Corollary 32. Let t ∈ T (Σ). If t ↪→R t
′ then top(t)→+

R′ top(t
′).

Corollary 33. Let t ∈ T (Σ). If t ↪→∗R t′ then top(t)→∗R′ top(t′).
Now, let us prove the converse.

Lemma 34. Let t ∈ T (Σ). If the derivation top(t) →+
R′ top(t

′) contains exactly one step by
R′1, and t′ ∈ T (Σ), then this derivation is of the form

top(t)→∗R′0 t0 →R′1
t1 →∗R′2∪R′3∪R′4∪R′5 top(t

′) (A)

Moreover:
1) Each term ti within the derivation t1 →∗ ti →∗ top(t′) contains at most one occurrence of
symbols in Q̂ ∪ {jk}, and consequently t1 →∗ top(t′) contains exactly one step by R′5.
2) t1 →∗ top(t′) can be commuted into t1 →∗R′2 t2 →R′4

t4 →∗R′3 t3 →R′5
top(t′).

Proof. See Appendix E.

Lemma 35. Let t ∈ T (Σ). If the derivation top(t) →+
R′ top(t

′) contains exactly one step by
R′1, and t′ ∈ T (Σ), then there exists p ∈ Pos(t) such that t ↪→[p,R] t

′.

Proof. From Lemma 34, top(t)→∗R′0 t0 →R′1
t1 →∗R′2 t2 →R′4

t4 →∗R′3 t3 →R′5
top(t′).

Note that the step by R′4 and the step by R′5 are achieved at the same position (say p),

and t2(p) ∈ Q̂. From Lemma 30, there exists a run α on t s.t. t2(p) = ˆα(p). Because of R′4,
t2(p) ∈ Sk. Then the rewrite step by R′5 is allowed by R, therefore t ↪→[p,R] t

′.

Lemma 36. Let t ∈ T (Σ). If top(t)→+
R′ top(t

′) and t′ ∈ T (Σ), then t ↪→+
R t
′.

Proof. See Appendix F.

4.2 Proofs of Theorems 28 and 29

Theorem 28 comes from Lemma 37, whereas Theorem 29 is obtained thanks to Lemma 37 and
Corollary 50 below.

Lemma 37. If R′ is terminating, then R is terminating.

Proof. By contrapositive. Assume that R is not terminating, i.e. there is an infinite derivation
t0 ↪→R t1 ↪→R · · · tn ↪→R · · · . From Corollary 32, top(t0) →+

R′ top(t1) →+
R′ · · · top(tn) →+

R′ · · · ,
i.e. R′ is not terminating.

To prove the converse, we need to introduce ordered sorts, and use the results of [8] about
the persistence of termination when adding or removing sorts.
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Definition 38. We consider the set of sorts S = {sQ, s>}∪{sq | q ∈ Q}∪{s′q | q ∈ Q} ordered
by ∀q ∈ Q, sQ � sq. Note that � is well-founded.
Let us define a sort attachment of Σ′ on S defined by:

- ∀f ∈ Σ, f : sQ × · · · × sQ → sQ

- ∀q ∈ Q, q : s′q → sq

- ∀q̄ ∈ Q̄, q̄ : sq → sQ

- ∀q̂ ∈ Q̂, q̂ : sq → sQ

- ∀k ∈ {1, . . . ,m}, jk : sQ → sQ

- ∀δ = (f(q1, . . . , qn)→ q) ∈ ∆, δ : sq1 × · · · × sqn → s′q

- top : sQ → s>

Let R′st be the TRS R′ viewed as an order-sorted TRS, considering that each variable xi of R′0
is of sort s′qi , the variable x of R′1 is of sort s′qf , each variable xi of R′2 ∪R′3 ∪R′4 is of sort sqi ,

and the variables of R′5 are of sort sQ. Thus, the sort attachment is consistent with R′, because
for each rule l → r of R′st, terms l and r are strictly well-sorted, and the sorts of l and r are
equal, i.e. s> for the rules of R′1, sQ for the rules of R′2 ∪ · · · ∪ R′5; except for the rules of R′0
where l : sQ and r : sq, i.e. R′0 is sort-decreasing, which is allowed in an order-sorted TRS.

Note that for all well-sorted terms t, t′ ∈ T (Σ′), t →R′ t
′ if and only if t →R′st

t′. On the
other hand, if t ∈ T (Σ′) is not well-sorted, then t is not reducible by R′st whereas t may be
reducible by R′. In other words, R′st works only with well-sorted terms.

If R′ does not include duplicating rules, Theorem 4.11 of [8] applies, i.e. termination is
persistent. Therefore:

Lemma 39. If R′ is not terminating and does not include duplicating rules, then R′st is not
terminating.

Lemma 40. Let t ∈ T (Σ′) be a well-sorted term of sort >. Then t(ε) = top and ∀p ∈
Pos(t)\{ε}, t(p) 6= top.

Proof. Obvious.

Lemma 41. Let t ∈ T (Σ′) be a well-sorted term. If t→R′1
t′ then t is of sort s>.

Proof. Assume that the step t →R′1
t′ is done at position p ∈ Pos(t). Then t(p) = top and t|p

is of sort s>. If p 6= ε, according to the sort attachment, t is not well-sorted. Then p = ε.

Lemma 42. Let t0 ∈ T (Σ′) be a well-sorted term. If t0 →+
R′st

tn by a derivation containing at

least one step by a rule of R′1, then for all i ∈ {0, . . . , n}, ti is of sort s> and ti(ε) = top.

Proof. There is some j ∈ {0, . . . , n−1} s.t. tj →R′1
tj+1. From Lemma 41, tj is of sort s>. Since

every rule of R′st is sort-preserving or sort-decreasing, and s> is not comparable with any other
sort, then for all i, ti is of sort s> and ti(ε) = top.

Lemma 43. R′0 ∪R′2 ∪R′3 ∪R′4 ∪R′5 is terminating.

Proof. Using the multiset path ordering (mpo) [1] with the precedence defined by ∀q, q1, q2 ∈
Q, ∀δ ∈ ∆, ∀f ∈ Σ, ∀k, (q̂ ∼ q̄1 > jk > f > q2) ∧ (f > δ), and using that for each rule of R′5,
Var(rk) ⊆ Var(lk).

Definition 44. We recursively define a mapping rm from T (Q ∪∆) to T (Σ) by

- rm(q(t)) = rm(t) for q ∈ Q,

- rm(δ(t1, . . . , tn)) = f(rm(t1), . . . , rm(tn)) for δ = (f(q1, . . . , qn)→ q) ∈ ∆.
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Remark. If t is of sort sq or s′q, then t ∈ T (Q ∪∆), and rm(t) is defined.

Lemma 45. Let t of sort s′q. Then rm(t)→∗R′0 q(t).

Proof. By structural induction on t.
- If t = δ with δ = (a→ q), then rm(t) = a→R′0

q(δ) = q(t).
- Otherwise t = δ(t1, . . . , tn) with δ = (f(q1, . . . , qn) → q), and for each i, ti is of sort sqi , i.e.
ti = qi(t

′
i) and t′i is of sort s′qi .

By the induction hypothesis, rm(ti) = rm(t′i)→∗R′0 qi(t
′
i). Then rm(t) = f(rm(t1), . . . , rm(tn))

→∗R′0 f(q1(t′1), . . . , qn(t′n))→R′0
q(δ(q1(t′1), . . . , qn(t′n))) = q(δ(t1, . . . , tn)) = q(t).

Lemma 46. Let t′′ ∈ T (Σ). If t′′ →∗R′0 q
′(t′) and t′ is of sort s′q′ , then t′′ = rm(t′).

Proof. By structural induction on t′′. See Appendix G for details.

Lemma 47. Let q, q′ ∈ Q and top(q(t)) be a well-sorted term.
If top(q(t))→R′1

.→∗R′0∪R′2∪R′3∪R′4∪R′5 top(q
′(t′)) then ∃p ∈ Pos(rm(t)), rm(t) ↪→[p,R] rm(t′).

Proof. t is of sort s′q. From Lemma 45 top(rm(t)) →∗R′0 top(q(t)) →R′1
. →∗R′0∪R′2∪R′3∪R′4∪R′5

top(q′(t′)). Since R′0 is right-linear, one can commute →∗R′0∪R′2∪R′3∪R′4∪R′5 into

→∗R′2∪R′3∪R′4∪R′5 top(t
′′)→∗R′0 top(q

′(t′))

and t′ is of sort s′q′ and t′′ ∈ T (Σ).
From Lemma 46, t′′ = rm(t′). Then top(rm(t)) →∗R′0 . →R′1

. →∗R′2∪R′3∪R′4∪R′5 top(rm(t′)).

However rm(t) ∈ T (Σ) and rm(t′) ∈ T (Σ).
From Lemma 35 we get: ∃p ∈ Pos(rm(t)), rm(t) ↪→[p,R] rm(t′).

Lemma 48. Let t′0 ∈ T (Σ′) be a well-sorted term.
If the derivation t′0 →R′st

t′1 →R′st
t′2 →∗R′st · · · is infinite, then

- for all i ∈ IN, the sort of t′i is s>,
- and there exists an infinite subset I = {i1, i2, . . .} of IN s.t. ∀i ∈ I, ∃qi ∈ Qf , ∃ti : s′qi , t

′
i =

top(qi(ti)), and rm(ti1) ↪→R rm(ti2) ↪→R · · · , which is an infinite derivation by R.

Proof. See Appendix H.

Corollary 49. If R′st is not terminating, then R is not terminating.

Thanks to Corollary 49 and Lemma 39, we get:

Corollary 50. If R is terminating and non-duplicating, then R′ is terminating.

4.3 Comparison with [9]

Theorem 1 of [9] shows that starting from a context-sensitive tree grammar G and a monotonic
cntTRS R, one can construct a context-sensitive tree grammar G∗ that generates the closure
of L(G) by R. Roughly speaking, it amounts to consider the set ∆ of production rules of G
as a rewrite system, and to transform the cntTRS ∆ ∪R into an ordinary TRS R′, which will
be considered as the production rules of G∗. This transformation of a cntTRS into a TRS has
some similarities with ours, if we consider that λ corresponds to top, and fin to jk. However,
states are not considered as symbols. Instead, they are introduced in pairs of the form 〈f, q〉 (see
Example 4 of [9]). Another difference is that R′ is not terminating (see PA ∪ PR in Example 4
of [9]) even if R is terminating and non-duplicating.

As we wanted to preserve termination, we have considered a more sophisticated transfor-
mation. Indeed, we view each transition δ as a function symbol, and use δ instead of f ∈ Σ.

On the other hand, instead of using δ, a simpler transformation could be considered, by
using a new symbol f ′ for each f ∈ Σ. However, the proof technique of Theorem 29 based on
sorts, does not work anymore because each symbol should have only one profile.



13

5 Conclusion and Further Work

Two techniques for transforming a pCTRS and a cntTRS into an ordinary TRS have been
presented in this paper. Both preserve rewrite computations and termination. Thus, studying
the termination of a pCTRS or a cntTRS amounts to study the termination of an ordinary
TRS, which can be done using the well-known techniques and tools. Further work could consist
in reducing the number of generated rewrite rules in particular cases, extending the methods
for pCTRS or cntTRS with built-in algebras, dealing with pCTRS or cntTRS modulo usual
theories (C,AC,....), dealing with conditional pCTRS or cntTRS.
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[7] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated Termination
Proofs with AProVE. In Vincent van Oostrom, editor, 15th Conference, RTA 2004, Aachen,
Germany, June 3-5, 2004, Proceedings, volume 3091 of LNCS, pages 210–220. Springer, 2004.

[8] Munehiro Iwami. Persistence of Termination for Term Rewriting Systems with Ordered Sorts.
Journal of Mathematical, Computational, Physical, Electrical and Computer engineering, 1(3):200–
204, 2007.

[9] Florent Jacquemard, Yoshiharu Kojima, and Masahiko Sakai. Controlled Term Rewriting. In
Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers of Combining Systems, 8th
International Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011. Proceedings,
volume 6989 of Lecture Notes in Computer Science, pages 179–194. Springer, 2011.

[10] Florent Jacquemard, Yoshiharu Kojima, and Masahiko Sakai. Term Rewriting with Prefix Context
Constraints and Bottom-Up Strategies. In Amy P. Felty and Aart Middeldorp, editors, Automated
Deduction - CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings, volume 9195 of LNCS, pages 137–151. Springer, 2015.

[11] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Tyrolean Termination
Tool 2. In Ralf Treinen, editor, 20th Conference RTA 2009, Braśılia, Brazil, June 29 - July 1,
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A Proof of Lemma 8
⇒. By induction on the length n of the derivation (q0, path(t, p)) 7→∗δ1,...,δn∈∆k (qn, ε).
Base case: n = 0.
Thus p = ε and (q0, path(t, ε)) = (qn, ε), i.e. qn = q0 and path(t, ε) = ε. We have to prove that
q0(t) →∗R′2 t[qn(t|p)]p. Actually, this derivation can be achieved in 0 step because t[qn(t|p)]p =

t[q0(t|ε)]ε = t[q0(t)]ε = q0(t).

Induction step: suppose that n ≥ 1.
Let us write p′ = u2 . . . un and for each i ∈ {2, . . . , n}, let us write v′i = u2 . . . ui, and v′1 = ε.
Thus p = u1.p

′ and vi = u1.v
′
i. Note that p 6= ε, therefore t is not a constant. Let us write

t = f(t1, . . . , tu1
, . . . , tar(f)). The derivation writes

(q0, path(t, p)) 7→δ1∈∆k (q1, path(tu1 , p
′)) 7→∗δ2,...,δn∈∆k (qn, ε)

Let us consider the first step. Note that δ1 = (q0, 〈f, u1〉, q1).
From Definition 4, (q0(f(x1, . . . , xar(f)))→ δ1(x1, . . . , q1(xu1

), . . . , xar(f))) ∈ R′2. Thus

q0(t) = q0(f(t1, . . . , tu1
, . . . , tar(f))→R′2

δ1(t1, . . . , q1(tu1
), . . . , tar(f))

On the other hand, the derivation (q1, path(tu1
, p′)) 7→∗δ2,...,δn∈∆k (qn, ε) includes n−1 steps.

From induction hypothesis, we get q1(tu1
)→∗R′2 tu1

{δ2}v′1 · · · {δn}v′n−1 [qn(tu1
|p′)]p′ .

Therefore
q0(t)→R′2

δ1(t1, . . . , q1(tu1
), . . . , tar(f))

→∗R′2 δ1(t1, . . . , tu1
{δ2}v′1 · · · {δn}v′n−1 [qn(tu1

|p′)]p′ , . . . , tar(f))

= δ1(t1, . . . , tu1
, . . . , tar(f)){δ2}u1.v′1

· · · {δn}u1.v′n−1
[qn(tu1

|p′)]u1.p′

= δ1(t1, . . . , tu1
, . . . , tar(f)){δ2}v1 · · · {δn}vn−1 [qn(t|p)]p

= f(t1, . . . , tu1 , . . . , tar(f)){δ1}ε{δ2}v1 · · · {δn}vn−1 [qn(t|p)]p
= t{δ1}v0{δ2}v1 · · · {δn}vn−1 [qn(t|p)]p

⇐. By induction on the length n of the derivation q0(t)→∗R′2 t{δ1}v0 · · · {δn}vn−1 [qn(t|p)]p.
Base case: n = 0.
Thus p = ε and q0(t) = t[qn(t|ε)]ε = qn(t), i.e. qn = q0. We have to prove that (q0, path(t, ε)) 7→∗
(q0, ε). This can be performed in 0 step, since path(t, ε) = ε and then (q0, path(t, ε)) = (q0, ε).

Induction step: suppose that n ≥ 1.
Let us write p′ = u2 . . . un and for each i ∈ {2, . . . , n}, let us write v′i = u2 . . . ui, and v′1 = ε.
Thus p = u1.p

′ and vi = u1.v
′
i. Note that p 6= ε, therefore t is not a constant. Let us write

t = f(t1, . . . , tu1
, . . . , tar(f)). The derivation writes

q0(t)→R′2
t{δ1}v0 [q1(t|u1)]u1 and q1(tu1)→∗R′2 tu1{δ2}v′1 · · · {δn}v′n−1

[qn(tu1 |p′)]p′ .
Note that t{δ1}v0 [q1(t|u1

)]u1
= f(t1, · · · , tu1

, · · · , tar(f)){δ1}v0 [q1(t|u1
)]u1

= δ1(t1, · · · , tu1
, · · · , tar(f))[q1(tu1

)]u1
= δ1(t1, · · · , q1(tu1

), · · · , tar(f)).
Therefore q0(t)→R′2

δ1(t1, · · · , q1(tu1
), · · · , tar(f)).

So, from Definition 4, we get δ1 = (q0, 〈f, u1〉, q1).
On the other hand, path(t, p) = 〈f, u1〉.path(tu1

, p′). Then (q0, path(t, p)) 7→δ1 (q1, path(tu1
, p′)).

The derivation q1(tu1
)→∗R′2 tu1

{δ2}v′1 · · · {δn}v′n−1
[qn(tu1

|p′)]p′ includes n−1 steps. From the

induction hypothesis, we get (q1, path(tu1
, p′)) 7→∗δ2,··· ,δn∈∆k (qn, ε). Finally (q0, path(t, p)) 7→δ1

(q1, path(tu1
, p′)) 7→∗δ2,··· ,δn∈∆k (qn, ε).

B Proof of Lemma 12
Since t ∈ T (Σ), it is easy to see that each term in the derivation contains exactly one element
in Q ∪ {j}. To be applied, the rules of R′2 need an occurrence of an element of Q, those of R′3
replace an element of Q by j, and those of R′4 need an occurrence of j. Then the derivation is
of the form
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top(qI(t))→∗R′2 top(t{δ1}v0 · · · {δn}vn−1 [qn(t|p)]p)
→R′3

top(t{δ1}v0 · · · {δn}vn−1 [j(t′|p)]p)→∗R′4 top(j(t[t
′|p])p) = top(j(t′)).

Note that qn ∈ Qkf . From Lemma 8, (qI , path(t, p)) 7→∗δ1,...,δn∈∆k (qn, ε), in other words,

path(t, p) ∈ Lk. Therefore t ↪→[p,lk→rk] t
′.

C Proof of Lemma 21
Because of Lemma 20, the derivation contains necessarily infinitely many steps by R′1. Let us
write R′′ = R′2 ∪R′3 ∪R′4.
The derivation writes t′0 →∗R′′ t′i1−1 →R′1

t′i1 →
∗
R′′ t

′
i2−1 →R′1

t′i2 · · · . From Lemma 19, every
term of the derivation is of sort s>. Therefore for each j, t′ij−1 is of the form t′ij−1 = top(j(tij−1))

and t′ij is of the form t′ij = top(qij (tij )) where qij ∈ QI and tij−1 = tij are of sort sΣ, i.e.

tij−1, tij ∈ T (Σ).
According to Lemma 12, for each j, tij ↪→R tij+1−1 = tij+1

. Therefore there is an infinite
derivation ti1 ↪→R ti2 ↪→R . . ..

D Proof of Lemma 30
1. Suppose t→∗R′0 q(t1) and let us prove that there exists a run α on t s.t. α(ε) = q. The proof

is by induction on the length n of t→∗R′0 q(t1). Since t ∈ T (Σ), necessarily n > 0.

If n = 1 then t→p′ q(t1). Then p′ = ε, t is a constant (say a), and t1 = δ where δ = (a→ q) ∈ ∆.
Therefore there exists a run α on t s.t. α(ε) = q.
Otherwise t →+ f(q1(s1), . . . , qn(sn)) → q(δ(q1(s1), . . . , qn(sn))) where δ = (f(q1, . . . , qn) →
q) ∈ ∆.
Then for each i, t|i →∗R′0 qi(si). From the induction hypothesis, there exists a run αi on t|i s.t.

αi(ε) = qi.
Now, we define α by ∀i ∈ {1, . . . , n}, α(i.v) = αi(v) and α(ε) = q. Thus, α is a run on t because
for each i, αi is a run on t|i, and f(α(1), . . . , α(n)) = f(α1(ε), . . . , αn(ε)) = f(q1, . . . , qn),
α(ε) = q, and f(q1, . . . , qn)→ q ∈ ∆.

2. Suppose that there exists a run α on t s.t. α(ε) = q, and let us prove that t→∗R′0 q(t1). The

proof is by structural induction on t.
If t is a constant, then δ = (t→ q) ∈ ∆, then (t→ q(δ)) ∈ R′0. Therefore t→R′0

q(δ).
Otherwise t = f(. . .). For each i ∈ {1, . . . , n} we define a run αi on t|i by αi(v) = α(i.v). Then
αi(ε) = α(i). Let us write qi = αi(ε) = α(i). From the induction hypothesis, t|i →∗R′0 qi(si).
On the other hand, α is a run on t, then δ = (f(q1, . . . , qn) → q) ∈ ∆, then the rule
f(q1(x1), . . . , qn(xn))→ q(δ(q1(x1), . . . , qn(xn))) is in R′0.
Consequently t→∗R′0 f(q1(s1), . . . , qn(sn))→R′0

q(δ(q1(s1), . . . , qn(sn))).

3. Suppose that q̂(q(t1))→∗R′2 t2 and t2(p) ∈ Q̂, and let us prove that t2(p) = ˆα(p). The proof

is by induction on the length n of q̂(q(t1))→∗R′2 t2.

If n = 0, then t2 = q̂(q(t1)) and p = ε. Then p ∈ Pos(t) and t2(p) = t2(ε) = q̂ = ˆα(p).
Otherwise n ≥ 1. Then
q̂(q(t1))→∗R′2 t2[q̂′(q′(δ(s1, . . . , sn)))]p′ →R′2

t2[f(q̄1(s1), . . . , q̂k(sk), . . . , q̄n(sn))]p′ = t2.

Necessarily p = p′.k, δ ∈ ∆, and δ = (f(q1, . . . , qn) → q′). From the induction hypothesis
p′ ∈ Pos(t) and q′ = α(p′). Then t2(p) = t2(p′.k) = q̂k. On the other hand, α(p) = α(p′.k) = qk
because α(p′) = q′ and δ = (f(q1, . . . , qn)→ q′) ∈ ∆. Consequently t2(p) = ˆα(p).

4. For all p ∈ Pos(t), let us prove that there exists a derivation q̂(q(t1))→∗R′2 t2 s.t. p ∈ Pos(t2)

and t2(p) = ˆα(p). The proof is by induction on the length of the position p.
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If p = ε, then q̂(q(t1))→0
R′2

t2, i.e. t2 = q̂(q(t1)) and t2(ε) = q̂ = ˆα(ε).

Otherwise p = p′.k. From the induction hypothesis q̂(q(t1))→∗R′2 t
′
2 and t′2(p′) = ˆα(p′).

We write t′2(p′) = q̂′. Thus t′2|p′ = q̂′(q′(δ(s1, . . . , sn)))→R′2
t2 = f(q̄1(s1), . . . , q̂k(sk), . . . , q̄n(sn))

and δ = (f(q1, . . . , qn)→ q′). Then t2(p) = t2(p′.k) = q̂k. On the other hand, α(p) = α(p′.k) =

qk because α(p′) = q′ and δ = (f(q1, . . . , qn)→ q′) ∈ ∆. Consequently t2(p) = ˆα(p).

E Proof of Lemma 34
As long as no rule of R′1 has been applied, the terms do not contain symbols of Q̂ ∪ Q̄ ∪ {jk}.
Then the derivation is of the form (A).

1) t1 contains exactly one symbol of Q̂, and the rules of R′2 ∪ R′3 ∪ R′4 ∪ R′5 transform one
symbol of Q̂ ∪ {jk} into 1 or 0 symbol of Q̂ ∪ {jk}. On the other hand, since R′5 removes jk,
then R′5 can be applied at most once. So, since t′ ∈ T (Σ) does not contain elements of {jk},
R′5 is applied exactly once.

2) The rules of R′2 ∪ R′3 ∪ R′4 are right-linear. Then the rewrite steps by R′2 ∪ R′3 ∪ R′4 can
be commuted between them. Note that the steps by R′2 are necessarily before the step by R′4,
which is necessarily before the step by R′5. On the other hand, R′5 is not necessarily right-linear.
However, since top(t′) is irreducible by R′3, the rewrite steps by R′3 can be achieved before the
step by R′5.

F Proof of Lemma 36
Let RR = R′\R′1. The derivation writes

top(t)→∗RR .(→R′1
.→∗RR) . . . (→R′1

.→∗RR) top(t′)
and contains at least one step by R′1.
Since R′0 is right-linear, within each →∗RR we can move the steps by R′2 ∪R′3 ∪R′4 ∪R′5 before
the steps by R′0. Thus, each→∗RR can be commuted into→∗R′2∪R′3∪R′4∪R′5 top(ti)→

∗
R′0

, and then

ti ∈ T (Σ). Therefore we get:
top(t)→∗R′2∪R′3∪R′4∪R′5 top(t0) (→∗R′0 .→R′1

.→∗R′2∪R′3∪R′4∪R′5) top(t1)

(→∗R′0 .→R′1
.→∗R′2∪R′3∪R′4∪R′5) . . . (→∗R′0 .→R′1

.→∗R′2∪R′3∪R′4∪R′5) top(t′)

and t0, . . . , tn ∈ T (Σ). Actually top(t0) = top(t) since t ∈ T (Σ). From Lemma 35, t ↪→+
R t
′.

G Proof of Lemma 46
- If t′′ = a is a constant, a→R′0

q′(δ′) with δ′ = (a→ q′). Note that t′ = δ′ is of sort s′q′ . Then
rm(t′) = rm(δ′) = a = t′′.
- Otherwise t′′ = f(t′′1 , . . . , t

′′
n). However

t′′ →∗R′0 f(q′1(t′1), . . . , q′n(t′n))→[ε,R′0] q
′(δ′(q′1(t′1), . . . , q′n(t′n))) with δ′ = (f(q′1, . . . , q

′
n)→ q′).

Let us write t′ = δ′(q′1(t′1), . . . , q′n(t′n)). Note that t′ is of sort s′q′ . For each i, from the previous
derivation we can extract t′′i →∗R′0 q

′
i(t
′
i) and t′i is of sort s′q′i

. From the induction hypothesis

t′′i = rm(t′i). Then rm(t′) = f(rm(t′1), . . . , rm(t′n)) = f(t′′1 , . . . , t
′′
n) = t′′.

H Proof of Lemma 48
Because of Lemma 43, the derivation contains necessarily infinitely many steps by R′1. Let us
write R′′ = R′0 ∪R′2 ∪R′3 ∪R′4 ∪R′5.
The derivation writes t′0 →∗R′′ t′i1(→R′1

.→∗R′′)t′i2(→R′1
.→∗R′′) · · · . From Lemma 42, every term

of the derivation is of sort s>. Therefore for each j, t′ij is of the form t′ij = top(qij (tij )), where
qij ∈ Qf .
According to Lemma 47, for each j, rm(tij ) ↪→R rm(tij+1). Therefore there is an infinite
derivation rm(ti1) ↪→R rm(ti2) ↪→R · · · .
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