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Abstract

Frama-C is a software analysis framework that provides a common infrastructure
and a common behavioral specification language to plugins that implement various
static and dynamic analyses of C programs. Most plugins do not support concurrency.
We have proposed conc2seq, a Frama-C plugin based on program transformation,
capable to leverage the existing huge code base of plugins and to handle concurrent C
programs.

In this paper we formalize and sketch the proof of correctness of the program trans-
formation principle behind conc2seq, and present an effort towards the full mecha-
nization of both the formalization and proofs with the proof assistant Coq.
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1 Introduction

Frama-C [14, 13] is a framework for static and dynamic analysis of C programs. It offers a
common infrastructure shared by various plugins that implement specific analyses, as well as
a behavioral specification language named ACSL [4]. Developing such a platform is a difficult
and time-consuming task. As most existing Frama-C plugins do not support concurrent
C code, extending the current platform to handle it is an interesting and promising work
direction.

Motivated by an earlier case study on deductive verification of an operating system com-
ponent [6], we have proposed a new plugin, named conc2seq [7], that allows Frama-C
to deal with concurrent programs. In order to leverage the existing plugins, we designed
conc2seq as a code transformation tool. For sequentially consistent programs [16], a con-
current program can be simulated by a sequential program that produces all interleavings
of its threads.

To ensure that the proofs and analyses conducted using conc2seq are correct, we need
to assure that the transformation preserves the semantics of programs. The contribution
of this paper presents the proof of correctness of the code transformation principle used in
conc2seq.

The verification of the transformation is done for simplified languages that capture the
interesting property with respect to validity, in particular memory accesses and basic data
and control structures (both sequential and parallel). We formalize the source (parallel)
language as well as the target (sequential) language and formally define the transformation
on these languages.

In these languages, we do not consider all control structures of the C language but only
simple conditionals and loops (goto and switch are not part of the considered languages).
The C assignments are decomposed into three simpler constructs: local assignments that
do not incur access to the global memory, reading of the global memory (one location at a
time), and writing into the global memory (one location at a time). An expression can only
be composed of constants, basic operations and local variables. Procedure calls are allowed
but recursion is not. There is no dynamic memory allocation.

In the remaining of this report, we present first the considered source and target lan-
guages as well as their formal semantics (Section 2). Then we describe the transformation
(Section 3). Section 4 is devoted to the equivalence relation between states of the source
program and states of the target program, and its use for the proof of correctness of the pro-
posed transformation. We discuss an ongoing effort to mechanize the formalization and proof
with the interactive theorem prover Coq in Section 5. Finally, we position our contribution
with respect to the literature in Section 6 and conclude in Section 7.
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2 Considered Languages

2.1 Syntax and Program Definition

We consider an enumerable set of memory locations L. We do not support dynamic memory
allocation: the memory locations manipulated by a program are thus known before the
beginning of the execution. A size is associated to each allocated location, i.e. the number
of values that can be stored at this memory location. In a way, such a location is a kind of
array.

The set of values that can be assigned to variables is written V and is the union of
memory locations (L), integers (Z) and booleans (B). We assume that different values of
the language take the same amount of memory.

We write X for the set of local variables. In the remaining of the paper, for a set A
whose elements are written a, A∗ is the set of sequences of elements of A and a will denote
an element of A∗, i.e. a sequence of elements of A. Expressions are defined as follows:

V 3 v ::= n | l | b n ∈ Z, l ∈ L, b ∈ B
e ::= v | x | op(e) x ∈ X

We do not define the set of operators here: it is a usual set of arithmetic and boolean
operations. It is however necessary to emphasize that these operators do not allow pointer
arithmetic. The only provided operation on memory locations is comparison. Expressions
cannot produce side-effects. In the remaining of the paper, expressions will be denoted by e
and variants.

Sequential language. A sequential program is defined as a sequence of procedures, by
convention the first one being the main procedure. A procedure is defined by its name, its
parameters (local variables) and the sequence of instructions that form its body:

proc ::= m(x)c m ∈ Name
instr ::= x := e local assignment

| x[y] := e writing to the heap
| x := y[e] reading from the heap
| while e do c
| if e then c else c
| m(e) procedure call

C 3 c ::= {} | instr ; c

where Name is the set of valid procedure names. select, interleavings, and names built
from Z are all reserved names. C is the set of instruction lists, i.e. program code.

The language includes the usual primitives in a small imperative language: sequence of
instructions (we will write {instr 1; instr 2} instead of instr 1; instr 2; {}), conditionals, loops.
Assignment is decomposed in three distinct use cases: assignment of a local variable with
the value of an expression, writing the value of an expression to the heap, and reading of a
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value from the heap to a local variable. Expressions cannot contain reads from memory, nor
procedure calls. A C assignment containing several accesses to the heap should therefore be
decomposed into several reads into local variables and an assignment of an expression to a
local variable, and finally, if necessary, a write to the heap from a local variable. Procedures
can be called using the classical syntax m(e) where e is the list of expressions passed in
arguments. Arguments are passed by value.

A sequential program progseq is fully defined by:

• the list of its procedures (the main one taking no parameter),

• a list of allocated memory locations with their associated sizes (positive numbers).

memory ::= [(l1, sizel1); . . . ; (lm, sizelm)]
progseq ::= proc memory

Parallel language. A parallel program can be executed by any strictly positive number of
threads. There is no dynamic creation of threads. During the execution of a parallel program
the number of threads remains constant, given by a specific parameter of each execution.
Let #tid denote this static number of threads.

T is the set of thread identifiers. We identify T with N seen as subset of Z. An element
of T is thus a value for both languages. A parallel program can use any of the sequential
program constructs. In addition, it can contain the instruction atomic(c) that allows to run
a sequence of instructions c atomically. In such a code section, no thread, other that the one
that initiated the execution of the atomic block, can be executed.

A parallel program progpar is fully defined by:

• the list of its procedures,

• a list of allocated memory locations in the shared memory with their associated sizes,

• a mapping from thread identifiers to defined procedure names, defining the main pro-
cedure of each thread.

progpar ::= proc memory mains where mains : T→ Name

For a program prog (either sequential or parallel), memprog denotes the allocated memory
of the program. This association list is also considered as a function, therefore memprog(l)
denotes the size allocated for memory location l, if defined. procsprog denotes the sequence
of procedures of the program. For a parallel program mainsprog is the mapping from T to
Name, and for a sequential program mainprog is the main procedure name. For a name m
and a program prog , bodyprog(m) denotes the body of the procedure named m in the program
prog . If it is clear from the context prog may be omitted.

Comparison with the concurrent C of the Frama-C plugin. For sequential pro-
grams, the simplifications with respect to the subset of C handled by our conc2seq plugin
are essentially that we do not support pointer arithmetic, the expressions containing several
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memory readings or procedure calls should be decomposed, and we support only the most
structured control structures. The typing is also very basic: variables and heap accept any
type of value (integers, booleans, memory locations) and the type of expressions is checked
dynamically by the semantic rules if necessary (for example the expression that is a condition
of a loop or conditional should evaluate to a boolean value).

In C11, sequentially consistent concurrent atomic operations are often described by an
equivalent sequential C program that is supposed to be atomically executed. In our Frama-
C plugin, such operations are specified using ACSL and their calls put into atomic sections.
In the small imperative parallel language presented above, we could use the same technique:
implement atomic operations as their sequential counterparts and put their calls into atomic
blocks.

In our case studies, the concurrent C programs do not need to know the number of
threads, and actually do not depend on the number of threads except for one specific feature:
global variables that are thread local. This kind of variables are in shared memory, but each
thread has its own independent copy. This is particularly useful to have thread dedicated
copies of global variables such as errno. In this case, in our memory model it would mean
that the number of memory locations called errno would be dependent on the number of
threads. First we do not have names for global memory locations, but only constants for
some statically allocated memory locations, and second the set of allocated memory locations
does not depend on the number of threads.

The absence of global variable names is not an important limitation. If we want to model
a procedure f that uses a thread local variable tlv we can define in our parallel language a
procedure f that takes an additional argument tlv and use, for each thread, a different main
procedure calling f with a specific allocated memory location passed to argument tlv .

However the set of allocated memory locations (as well as the number of different main
procedures) is not dependent on the number of running threads. We can then imagine to have
a kind of extended parallel language which could contain symbolic names for thread local
variables and a pre-processor that, for a specific value of #tid , would generate programs of
the proposed parallel language (generating as many memory locations and main procedures
as necessary). As the transformation presented in Section 3 from the proposed parallel
language to the proposed sequential language also depends on #tid , we do not consider this
aspect to be a limitation of our modelling approach. These modelling choices allow to keep
both languages simple and representative.

2.2 Semantics

2.2.1 States

For a sequential program, or a thread, the local environment ρ is a partial function from
local variables to values: ρ : X ⇀ V . The set of local environments is written E . ∅ denotes
the empty environment, i.e. the function undefined everywhere.

For both the sequential and the parallel languages, a heap η : L ⇀ N ⇀ V is a partial
function from memory locations that returns a partial function from indices to values, thus
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essentially defining an array indexed from 0. H is the set of heaps. For a defined memory
location, the associated partial function is defined continuously for indices from 0 to a fixed
size.

A local execution context is composed of the name of the procedure being executed, a
local environment and the code that remains to execute. The set of local execution contexts
is L = Name×E×C. A call stack is defined as a sequence (stack) of local execution contexts:
s ∈ S = L∗.

The states of sequential and parallel programs are respectively:

Σseq = S ×H Σpar = (T⇀ S)×H

For a parallel state σpar ∈ Σpar , we denote by stacksσpar the first component of the state,
i.e. the mapping from thread identifiers to stacks of local execution contexts. We omit the
index σpar when it is clear from the context.

Initial contexts and states. The initial execution stack is [(main, ∅, body (main))]
for a sequential program. For a parallel program, the initial context of a thread t ∈ T
is [(mains (t), ∅, body (mains (t)))]. For a sequential program, an initial state is thus:
([(main, ∅, body (main))], ηinit

seq ). For a parallel program, an initial state is (stacks init , η
init
par )

where ∀t ∈ T. stacks init(t) = [(mains (t), ∅, body (mains (t)))].
An initial heap ηinit

seq should satisfy the memory allocation defined by a sequential program,
i.e. if (l, size) ∈ mem then ηinit

seq (l)(i) is defined for all i < size. In addition, the values
contained at such a memory location cannot be themselves memory locations (but they can
be any other value). The same constraints hold for a initial heap of a parallel program.

Final states and safe execution The final state of a sequential program is such that
∃η. σfinal

seq = ([], η) and the final state of a parallel program is such that ∃η. σfinal
par = (stacks , η)

with ∀t ∈ T. stacks (t) = [].
We define a blocking state as a non final state reached from an initial state such that no

semantic rule can make the execution progress. A safe program is a program that does not
reach a blocking state from any initial state. A program that does not terminate, is a safe
program.

2.2.2 Operational semantics

Actions The sequential programs produce 5 basic actions: silent action, procedure call,
procedure return, memory reading, memory writing. For parallel programs, the atomic block
structure requires to have an action list as a possible action:

aseq ::= τ | call m v | return m | read l n v | write l n v
apar ::= aseq | atomic aseq

Execution traces are action lists for sequential programs and lists of events, i.e. pairs of
thread identifier and action, for parallel programs.
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P ` (m, ρ, (x := e; c)) · s, η τ−−−−−−→ (m, ρ[x 7→ v], c) · s, η
[assign] if JeKρ = v

P ` (m, ρ, (x[eo] := ev; c)) · s, η
write l o v−−−−−−−−→ (m, ρ, c) · s, η[(l, o) 7→ v]

[read] if JevKρ = v, JeoKρ = o, ρ(x) = l, o < mem (l)

P ` (m, ρ, (x := y[eo]; c)) · s, η
read l o v−−−−−−−→ (m, ρ[x 7→ v], c) · s, η

[write] if JeoKρ = o, ρ(y) = l, o < mem (l), η(l)(o) = v

P ` (m, ρ, (while e do cbody ; c)) · s, η τ−−−−−−→ (m, ρ, (cbody ++ while e do cbody ; c)) · s, η
[while : true] if JeKρ = true

P ` (m, ρ, (while e do cbody ; c)) · s, η τ−−−−−−→ (m, ρ, c) · s, η
[while : false] if JeKρ = false

P ` (m, ρ, (if e then ct else cf ; c)) · s, η
τ−−−−−−→ (m, ρ, (ct ++ c)) · s, η

[if : true] if JeKρ = true

P ` (m, ρ, (if e then ct else cf ; c)) · s, η
τ−−−−−−→ (m, ρ, (cf ++ c)) · s, η

[if : false] if JeKρ = false

P ` (m, ρ, (m′(e); c)) · s, η call m′ v−−−−−−→ (m′, [x 7→ v], cm′) · (m, ρ, c) · s, η
[call] if m′(x)cm′ ∈ P , |x| = |e|, JeKρ = v, m′ 6∈ s

P ` (m, ρ, []) · s, η return m−−−−−−−→ s, η
[return]

P ` (m, ρ, (select#tid(tid , pc); c)) · s, η call select [ltid , lpc ]−−−−−−−−−−−−−→ (m, ρ, c) · s, η[(ltid , 0) 7→ t]
[select] if JtidKρ = ltid , JpcKρ = lpc,

and 0 ≤ t < #tid , η(lpc)(t) 6= 0

Figure 1: Operational semantics of sequential programs

The operational semantics of sequential programs is defined in Figure 1. A judgement of
the sequential semantics has the following form:

P ` s, η aseq−−−→ s′, η′

meaning that a new state (s′, η′) is reached from the state (s, η) and this execution step
produces an action aseq . P is a program definition. We write

P ` s, η aseq−−−→∗ s′, η′

for the reflexive and transitive closure of the relation defined by the inference system of
Figure 1.

We use the following notations: l1 ++ l2 is the concatenation of two sequences/lists. To
add an element on top of a sequence, we use the symbol ; for sequences of instructions, and
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P , #tid ` stacks , η
(t,aseq )−−−−−−−−−−→ stacks [t 7→ s′], η′

[seq] if P ` stacks (t), η
aseq−−−−→ s′, η′ and 0 ≤ t < #tid

P , #tid ` stacks , η
(t,atomic aseq )−−−−−−−−−−−→ stacks [t 7→ (m, ρ′, c)], η′

[atomic] if P ` [(m, ρ, catomic)], η
aseq−−−−−→∗ [(m, ρ′, [])], η′

where stacks (t) = (m, ρ, (atomic(catomic); c)) · s and 0 ≤ t < #tid

Figure 2: Operational semantics of parallel programs

the symbol · for sequences of local contexts (stacks). |l| is the length of the sequence l. We
write x ∈ l to denote that x is an element of the sequence l, and we abuse this notation in
the case x is one component of a tuple in the list of tuples l. f [a 7→ b] is the function f ′ such
that for all element a′ different from a, then f ′(a′) = f(a′) and f ′(a) = b. For two sequences
a and b of equal length, we write f [a 7→ b] instead of f [a1 7→ b1] . . . [an 7→ nn]. Thus ρ[x 7→ v]
denotes an update of variable x with value v in environment ρ while η[(l, o) 7→ v] denote
un update at offset o of memory location l with value v in heap η. When it is the empty
environment that is updated, we omit it.

JeKρ corresponds to the evaluation of expression e in local environment ρ. We omit the
definition of this evaluation that is very usual, for example for a variable x, JxKρ = ρ(x).

This semantics is rather usual, but condition m′ 6∈ s in rule [call] forbids recursive
procedure calls. Moreover there is a special procedure call: select#tid(tid , pc). This is the
only non-deterministic rule of the sequential language. It selects randomly a value t between
0 and #tid (excluded), such that pc is a memory location which is defined at index t and
contains a value different from 0. The memory location tid is updated with this value t.
This procedure call will be used in the simulation to model the change of current thread.
Note that is procedure is not supposed to be called in parallel programs.

Figure 2 presents the semantics of parallel programs. A judgement of this semantics have
the following form:

P , #tid ` stacks , η
(t,apar )−−−−−→ stacks ′, η′

where we recall that #tid is a strictly positive number of threads.
A thread t is selected such that 0 ≤ t < #tid and t has code to execute. If the first

instruction of t is not an atomic block, then the state is reduced using the semantics of the
sequential language. In this case the whole shared heap is given as the heap of the sequential
reduction. The action of the sequential reduction is combined to the thread identifier t to
form the event of the parallel reduction.

If the first instruction of t is an atomic block, then we use the sequential semantics to
reduce the whole block. As we reduce the whole instruction sequence without allowing for
a change of thread, the execution of this sequence is indeed atomic. The nesting of atomic
blocks is not allowed: our semantics would be stuck in this case.
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3 Program Transformation

Here, we present the transformation function that allows to get the sequential program that
corresponds to the original parallel program.

3.1 Overview

Let us consider a parallel program procs memory mains . The memory of the simulating
sequential program contains: memory , a fresh memory location pct of size #tid , a fresh
memory location ptid of size 1, for each procedure m a fresh memory location from(m)
of size #tid . memory will be shared by the threads. The array pct contains for each
thread identifier t (therefore at index t) the simulation of the program counter of the thread
identified by t, while ptid contains the identifier of the current running thread. from(m) is
used to manage the return of calls to m in the simulating code.

All instructions are supposed to be atomic but loops and conditionals. For these, the
evaluation of the condition is supposed to be atomic. The transformation essentially trans-
lates each atomic instruction of each procedure of the parallel program into one procedure of
the simulating sequential program. This procedure has a parameter tid that is supposed to
be the identifier of the active thread running the instruction. In the remaining of the paper,
variables written is this police are fresh variables not used in the input parallel program, but
that we need to implement the simulating sequential program, such as tid.

We assume that the input parallel program is labeled: each instruction instr is labeled by
two values of Z\{0} (0 is a label that indicated termination), such that the first one, denoted
`, is a unique label in the program definition, and the second one, denoted `next , is the label
of the instruction that follows the current instruction in the program text (for example the
label of the next instruction of a conditional is the instruction that follows the conditional,
not the label of one of the branches). We write instr ``next for such a labeled instruction. One
important point is that the label `next of the last instruction of each procedure is a label
distinct from all the labels in the program. begin(m) is a function that returns the label
of the first instruction of the body of procedure m. end(m) returns the label `next of the
last instruction of the procedure body. If the body is empty, both functions returns a label
distinct from all other labels in the program.

For each local variable x of the program (uniquely identified by the name m of the
procedure in which it appears and its name x), including procedure formal parameters, we
need a fresh memory location &mx of allocated size #tid (we omit m in the remaining of the
paper), so that each simulated thread has a copy of what was a local variable in the parallel
program.

We detail how the transformation proceeds on an example instruction: (x := y + 1)``next .
This instruction will be transformed into a procedure named ` with parameter tid (we assume
a coercion toName from Z to Name, and we omit it most of the time). y is simulated by
the array &y. As reads from the heap are not allowed in expressions, in the simulated code
we first need to read the value from &y. We write this sequence of instructions load(y)
defined as tmp := &y; y := tmp[tid]. Note that after this sequence of instructions, variable
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y is defined, therefore the original expression can be used as is. The original assignment
however should be translated too as x is simulated by an array &x. We translate it to:
tmp := &x; tmp[tid] := y+1. Finally we update the program counter of the running thread,
so the full translation of the instruction is:

`(tid){ tmp := &y; y := tmp[tid]; tmp := &x; tmp[tid] := y+1; tmp := pct; tmp[tid] := `next }

The generalization to an arbitrary x := e is just that we “load” all the variables of e before
using e. Reading from the heap and writing to the heap are translated in a very similar way.

Both conditional and loops are translated into a procedure that evaluates the condition
and then updates the program counter to the appropriate label. For example, if the condition
of a conditional is true then the program counter is updated to the label of the first instruction
of the “then” branch of the original conditional, if this branch is non-empty, otherwise the
label used is the label of the instruction that follows the original conditional.

Each procedure call is translated into one procedure that passes the values to parameters
and updates the program counter to the first instruction of the body original procedure (label
begin(m) for a call to m). Also for each procedure m we generate an additional procedure,
named end(m), that manages the return of calls to m. This procedure should be able to
update the program counter to the instruction that follows the call. To be able to do so
for any call, this return procedure should use a label previously stored at memory location
from(m) by the generated procedure that prepares the call:

end(m)(tid){ tmp := from(m); aux := tmp[tid]; tmp := pct; tmp[tid] := aux }

One procedure is generated for each atomic block. Each instruction in the block is
generated in a similar way as previously described but no update to the program counter is
done, conditionals and loops keep their structure and their blocks are recursively translated
in the atomic fashion. Procedure calls are inlined and the body of the called procedure is
translated in the atomic fashion. It is necessary that procedures are not recursive for this
inlining transformation to terminate.

Finally the main procedure of the simulating sequential program, named interleavings,
is generated. It is essentially a loop that randomly selects a thread to execute and then
switch to the appropriate procedure call depending on the program counter of the active
thread.

3.2 Memory Allocation

For each local variable x possibly allocated by procedure inside its execution context, we
create a simulating memory block at the address &x, and that is defined for any correct
thread identifier. These addresses are disjoint from each other and disjoint from the original
addresses in the parallel program. Each of these new memory blocks contains, during the
execution, for each thread, the current value of the corresponding original local variable in
a parallel execution.

12



For each instruction, we create a procedure that simulate it. It receives in parameter the
identifier of the thread that is simulated for this step of simulation in a local variable tid. We
define the load function that associate, to a given local variable x of the original program,
the sequence of simulation instructions that allows to load the corresponding value from the
simulation block, for the thread identifier received in input of the simulating procedure. In
the generated instruction, we reuse the original name of the local variable to create a new
variable that is local to the simulating procedure:

load(x) ≡ tmp := &x; x := tmp[tid]

In this function, we use a local variable tmp. We suppose that this variable do not exists
in the simulation procedure. We could reuse the name x since variable are not typed, we
prefer to use tmp to keep in mind that it is only used to store simulation addresses and make
the figures more readable.

The variables function returns the set of variables of its argument that can be an expres-
sion, an instruction, a bloc of instruction or even a program. We name loads the function
that produces the instructions that loads all local variables from simulating addresses, iter-
ating load on each of them. For example, to get all loads of the local variables corresponding
to a given expression, we write:

loads(variables(e))

We define globally, in the simulating program heap:

• ptid, an address to a memory block of size 1, that is used to store the identifier of the
currently executed thread,

• pct, an address that associates to each thread identifier its program counter,

• addresses for each procedure m, that associate for each thread identifier, the program
point where it has to return after execution of m.

More precisely for this last item, we define the function from that returns, for a procedure
m, the corresponding address. For example, if m is called by m2, during the execution of
the instruction c by the thread t, from(m)[t] will contain the identifier of the instruction c
according to the control flow graph.

We consider that the control flow graph is computed in advance for the original program
and labels each instruction with a unique identifier ` ∈ Z. Each instruction is also labeled
with the identifier of the instruction that follows it `next in the order of instructions. Notice
that for example, for a list of instructions :

if e then ct else cf ; c

the instruction that follows the conditional is the first instruction of c and not the instructions
of the internal instruction blocks. In the rest of this paper, when we want to talk about label
information, we will write the corresponding instruction instr ``next .
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1 trans assign(x, e, `, `next) ≡
2 toName(`)(tid) {

3 loads(variables(e)) ;

4 tmp := &x ;

5 tmp[tid] := e ;

6 tmp := pct ;

7 tmp[tid] := `next ;

8 }

Figure 3: Assignment simulation

For `next we should consider the cases where there is not any instruction after a given
instruction, either because this instruction is in conditional block or it is the last instruction
of its procedure m. In the first case, if we are in a loop, `next is the identifier of the loop
itself, if we are in the block of a conditional, it is the instruction that follows the conditional
instruction. Finally, if it is the last instruction of a procedure m, the value of `next is a special
label end(m) that indicates we have to perform a return action. This label is distinct from
all other labels in the program.

Indeed, the control flow graph also associates labels to each procedure: the identifier of
its first instruction, and the one that corresponds to the return. This last identifier is not the
identifier of an instruction in the source program but simply marks the end of the procedure,
for which we have to produce a simulating procedure.

In the rest of this report, we suppose that the parallel semantics use labeled instructions.

3.3 Local and global assignments

The assignment (x := e)``next is simulated by a procedure named toName(`) as illustrated
in Figure 3. The first instructions of the simulation are generated using the load function
previously explained in order to load the values of the local variables used in e for simulated
thread. We then write the memory location &x that simulates x at the index tid, with the
expression e for which local variables have been loaded by the instructions generated by the
load function. Finally we place the program counter to the instruction `next for the thread
tid.

The memory load (x := p[o])``next is simulated by the procedure given in Figure 4. Fol-
lowing the same scheme that the one used in the local assignment, we first load local variables
of o, and the local variable corresponding to the p pointer. Then, we load the global memory
to x and write the read value to the memory block &x for the thread tid. Finally, we place
the program counter on the next instruction.

The memory store instruction (p[o] := e)``next is translated as shown in Figure 5. We
first load the local variables of e and o. If some variables are used in both expressions, it
does not cause any problem from an execution point of view: such a variable will simply
be read a second time, overwriting the previous read with the same value (since it cannot

14



1 trans read(x, p, o, `, `next) ≡
2 toName(`)(tid) {

3 loads(variables(o)) ;

4 load(p) ;

5 x := p[o] ;

6 tmp := &x ;

7 tmp[tid] := x ;

8 tmp := pct ;

9 tmp[tid] := `next ;

10 }

Figure 4: Memory load simulation

1 trans write(p, o, e, `, `next) ≡
2 toName(`)(tid) {

3 loads(variables(e)) ;

4 loads(variables(o)) ;

5 load(p) ;

6 p[o] := e ;

7 tmp := pct ;

8 tmp[tid] := `next ;

9 }

Figure 5: Memory store simulation

change between these two loads). We then load the pointer p and write the value in memory.
Finally, we place the program counter on the next instruction.

3.4 Conditionals and Loops

A conditional instruction
(if e then ct else cf )

`
`next

is simulated by the procedure of Figure 6. We first load the variables of e. We then build
a new conditional instruction where branches now change the program counter according to
the next instruction to execute in the corresponding branch. If this branch is empty, the
program counter is the instruction that follows the conditional.

A loop instruction (while e do c)``next is simulated by a procedure generated as indicated
in Figure 7. If the body of the loop is empty, the loop is infinite if the expression is evaluated
to true: expressions cannot contain global memory loads, so the condition will always be
true. The first branch of the generated conditional instruction move the program counter to
the loop instruction itself if the body is empty, else, to the first instruction of the body. The
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1 trans cond(e, ct, cf, `, `next) ≡
2 toName(`)(tid) {

3 loads(variables(e)) ;

4 tmp := pct ;

5 if e then

6 ct = {} →
7 tmp[tid] := `next ;

8 ct = instr `
′

`′next
; →

9 tmp[tid] := `′ ;
10 else

11 cf = []→
12 tmp[tid] := `next ;

13 cf = instr `
′

`′next
; →

14 tmp[tid] := `′ ;
15 }

Figure 6: Conditional instruction simulation

other branch move the program counter to the instruction that follows the loop.

3.5 Procedure call and return

Figure 8 gives the transformation of a procedure call (m(l))``next . As we previously mentioned,
for each procedure, we create an address that associates, to each thread, the next instruction
to perform when the current simulated procedure returns. This address is obtained using
the from function.

First, we load all variables used in the list of parameters transmitted to the procedure
m. We define the combine function that iterates on variables of m and write at its simu-
lation address, for the current thread, the expression of l that it receives. We can define
combine(, a, s) follows:

combine(as , es , tid) ≡
as , es = [], [] → {}
as , es = a :: as ′, e :: es ′ → [tmp := &a; tmp[tid] := e] ++ combine(as ′, es ′, tid)

Then, we write in from(m), at the index tid, the identifier of the next instruction to execute
at the return of the called procedure. Finally, we move the program counter to the first
instruction of the body of m (note that if it is empty ` = `next).

When we process original procedure, we also add a simulation for the return that is
identified `next . This simulation is defined as illustrated by the figure 9.

We load, from from (written during the simulation of the call to m), the identifier of the
instruction where we have to return and move the program counter to this identifier. The
aux local variable is introduced ensuring it is different of tmp and tid.
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1 trans loop(e, b, `, `next) ≡
2 toName(`)(tid) {

3 loads(variables(e)) ;

4 tmp := pct ;

5 if e then

6 b = {} → //infinite loop

7 tmp[tid] := ` ;

8 b = instr `
′

`′next
; →

9 tmp[tid] := `′ ;
10 else

11 tmp[tid] := `next ;

12 }

Figure 7: Loop simulation

1 trans call(m, begin(m), l, `, `next) ≡
2 toName(`)(tid) {

3 loads(variables(l)) ;

4 combine(args(m), l, tid) ;

5

6 tmp := from(m) ;

7 tmp[tid] := `next ;

8

9 tmp := pct;

10 tmp[tid] := `m ;

11 }

Figure 8: Procedure call simulation

1 trans return(m, `end) ≡
2 toName(`)(tid) {

3 tmp := from(m) ;

4 aux := tmp[tid];

5 tmp := pct;

6 tmp[tid] := aux ;

7 }

Figure 9: Procedure return simulation
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Each thread receives its main procedure. Each of them are also processed to generated
simultation procedures for their instructions. A parallel program is then a list of main
procedure calls. The return identifier of each of them is 0, that is a reserved identifier and
that corresponds to the action “do not perform action”. We must also ensure that initially,
every program counter is placed on the identifier of the call simulation of its main.

3.6 Atomic block

In order to produce the simulation of an atomic block, we can visit recursively the instructions
to execute. Assignments are replaced by the simulation codes previously defined (we can
remove the write of the program counter, but keeping it do not break the semantics). Loads
needed for the expressions used in conditional instructions are produced the same way we
perform them in the simulating procedure. However, the blocks now recursively contains
the simulations of the instructions of the original code and not a jump to another program
point. For the loop instruction, we must also reload local variables in the end of the block
in order to update the expression of the condition.

Procedure call from an atomic block are simply inlined. We just have to build the
execution context. Consequently, the idea is to build the context (as we do in the simulation
of a call), and then insert the simulation of each of the instructions of the procedure. We
also add the simulation of the return in order to simplify the trace equivalence that we will
define in the section 4. Again, recursive calls are not allowed.

Finally, we can update the program counter to the instruction that follows the atomic
block.

The figure 10 informally illustrates a transformation function for atomic blocks. We
suppose that we have transformation functions for assignment, reads and writes that only
return the code of the simulation, without the program counter update and the procedure
itself (we note this variation t_code for the transformation t). Since recursive calls are not
allowed, this function terminates.

3.7 Instruction and procedure transformation

To translate any instruction of the parallel language, we just pattern match on the instruc-
tion and one of the previously defined transformation functions is appropriately called. We
define the function that calls the right transformation according to the type of instruction
in Figure 11.

For each procedure in a program definition, this function is apply to each of the instruction
of the procedure body.

3.8 Interleavings

The main procedure of the simulating sequential program is built as shown in Figure 12. In
order to make the code more readable, we use a switch instruction that does not exists in
the language. In the actual formalization, we chain conditional instructions.
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1 trans atomic list(l) ≡
2 l = {} → {}
3 l = i :: l’ →
4 sim :=
5 i = x := e → trans assign code(x,e)
6 i = x := p[o] → trans read code(x,p,o)
7 i = p[o] := e → trans write code(p,o,e)
8 i = if e then ct else cf →
9 loads(variables({)e) ;

10 if e then trans atomic list(ct)
11 else trans atomic list(cf)
12 i = while e do b →
13 loads(variables(e)) ;

14 while e do {

15 trans atomic list(b) ;

16 loads(variables({)e) ;

17 }

18 i = m(ps)`
′

`next
→

19 {

20 trans call code(m, ps) ;

21 trans atomic list(body (m)) ;

22 end(m)(tid)
23 }

24 sim ++ trans atomic list(l’)
25

26 trans atomic(l, `, `next) ≡
27 toName(`)(tid) {

28 trans atomic list(l)
29 ++ {

30 tmp := pct ;

31 tmp[tid] := `next

32 }

Figure 10: Atomic blocks simulation
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1 trans instruction(instr ``next ) ≡
2 instr = x := e → trans assign(x,e,`,`next)
3 instr = x := p[o] → trans read(x,p,o,`,`next)
4 instr = p[o] := e → trans write(p,o,e,`,`next)
5 instr = if e then ct else cf → trans cond(e,ct,cf,`,`next)
6 instr = while e do c → trans loop(e,c,`, `next)
7 instr = atomic c → trans atomic(c,`,`next)
8 instr = m(ps) → trans call(m,end(m),ps,`,`next)

Figure 11: Simulation of an instruction

This procedure has basically two parts: in the first part (denoted by cinit) each program
counter is updated to the identifier of the first instruction of the main procedure of the
considered thread. cinit places the value at location from(mains (t)) to 0 to stop the execu-
tion when the main procedure ends. cinit also initializes the local variable terminated, that
indicates if all threads are terminated, to false. We suppose that there is at least one thread
with a main procedure to execute. If it were not the case, we would initialize it to true. The
second part is the main simulating loop: if there are still threads to run, a thread identifier
of an active thread is chosen (call to select, instruction named cselect), then the value ` of the
program counter for this thread is read and a switch (implemented as nested conditionals)
calls the appropriate procedure named ` (sequence of instructions named csim). The body of
this loop ends by updating the flag that indicates if there are still running threads (sequence
of instructions named ctermination).

3.9 Simulating program definition

For parallel program:
progpar = proc memory mains

the generated simulating program follows this scheme:

progsim = [interleavings] ++ procsim memsim

where list procsim contains the simulating procedures of each instruction and procedure
return of the original program.

The list of addresses is memsim = memory ++ memsim
sim where the list memsim

sim contains the
pairs:

• (ptid, 1) used by select,

• (pct, #tid) the program counters,

• for each procedure m of the original program, a pair (from(m), #tid) to store return
program points,
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1 interleavings(){
2 // cinit

3 tmp := pct ;

4 ∀t ∈ [0,#tid [,
5 tmp[t] := begin(mains (t)) ;

6 ∀t ∈ [0,#tid [,
7 tmp := from(mains (t)) ;

8 tmp[t] := 0 ;

9 terminated := false;
10

11 while ¬terminated do {

12 // cselect

13 select#tid(ptid, pct) ;

14 // csim

15 tmp := ptid ;

16 tid := tmp[0] ;

17 tmp := pct ;

18 aux := tmp[tid] ;

19 switch aux is { ` : toName(`)(tid) }

20 // ctermination

21 terminated := true ;

22 tmp := 0 ;

23 while tmp < #tid do {

24 if pct[tmp] 6=0

25 then { terminated := false }

26 else { } ;

27 tmp := tmp + 1 ;

28 }

29 }

30 }

Figure 12: Main procedure of the simulating sequential program
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• for each local variable x of each procedurem of the original program, a pair (&mx, #tid),
that models its simulating memory.

4 Correctness

4.1 Equivalence of states and traces

We note σsim the sequential program state (ssim , ηsim) of the simulation of a safe parallel
program in a state σpar = (spar , ηpar). In ηsim , we distinguish two disjoint parts ηpar

sim that
replicates the original program heap ηpar and ηsim

sim the addresses that simulate the local
variables of spar . This second part also includes program counter address pct, the address
that allow thread selection ptid, and the addresses used for procedure returns from(m). For
all these addresses, the memory initially allocated must be greater or equal to the maximum
thread identifier.

When we want to select the part of ηsim
sim that simulates the thread t, we use the syntax

ηsim
sim [t]. It partially applies the function defined by ηsim

sim , restraining it to index t. So the
function ηsim

sim [t](l) is ηsim(l, t).
We define state equivalence as follows:

ηpar = ηpar
sim (1)

∀t ∈ T, ρ ∈ stacks (t), x ∈ X . ρ(x) = v =⇒ ηsim
sim [t](&x) = v (2)

∀t ∈ T, ctx ∈ L, s ∈ S. stacks (t) = ctx · s⇐⇒ ηsim
sim [t](pct) = next(ctx ) (3a)

∀t ∈ T. stacks (t) = []⇐⇒ ηsim
sim [t](pct) = 0 (3b)

∀t ∈ T. wf stack(stacks (t), ηsim
sim [t]) (4)

ssim = (interleavings, ρsim , {while ¬terminated do (cselect ++ csim ++ ctermination)}) (5)

∧ ρsim(terminated) = true⇐⇒ ∀t ∈ T. ηsim
sim [t](pct) = 0

σpar ∼ σsim

with :
next(ctx ) ≡ ctx = ( , , instr``next :: ) → `

ctx = (m, , []) → end(m)

and

wf stack([], ηsim
sim [t])

ηsim
sim [t](from(m)) = 0

wf stack((m, , ) · [], ηsim
sim [t])

ηsim
sim [t](from(m)) = next(ctx ) wf stack(ctx · s′, ηsim

sim [t])

wf stack((m, , ) · ctx · s′, ηsim
sim [t])

The premise (1) expresses the fact that the original heap should be a sub-part of the
simulating heap.
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Then (2), for any local variable x of the original program, the value we can find at the
simulating memory location &x at the index t must be equal to the value of x in the stack of
t in the original program. For the sake of readability, we write ρ ∈ stacks (t) to directly select
ρ in every ctx of stackst. This property is only an implication (and not an equivalence) since
we do not reinitialize variables when we simulate the return of a procedure. As we consider
safe programs, a new call to the procedure does not make read access to local variables before
initializing it. So it does not breaks our notion of equivalence.

Our program counters must be correct. We use the next function that, for a given local
context ctx returns the identifier of the next instruction identifier ` of m, or end(()m), if
there is not any other instruction to execute. In (3a), for any thread, if its stack is not empty,
the program counter of this thread ηsim

sim [t](pct) must be the identifier returned by next. If
it is empty (3b), the program counter must be 0.

The stack must be correctly modeled (5). We define the recursive predicate wf stack.
For a given stack s (of a thread t), and the simulation of local data of t, ηsim

sim [t], checks that
from(m) correctly models s. If the stack is empty, there are not anything to constrain in
from(m) since there is not any procedure return to perform as (3b) ensures that the program
counter is 0, that forbids any action for t. If there is a unique context in the stack, the last
return must allow us to bring the program counter to 0 in order to stop the execution.
Finally, if there is more than one context, the top context (m, , ) must return to the next
instruction of ctx , the next context, and the rest of the stack must also be correctly modeled.
Again, this is an implication since we do not reinitialize from(m) when we return. We will
prove that it does not break the equivalence.

Finally, we define equivalent states for simulating program states such that the next
action to perform is the evaluation of the condition of the interleaving loop. The simulation
of the execution of an instruction is the complete execution of: loop condition evaluation and
then the body of the loop (if needed). This is modeled by the part (5) of the equivalence.

The equivalence of traces is defined on filtered list of events generated by the semantics.
In the execution of the simulating program, we ignore τ -actions and memory operations

performed in ηsim
sim . We ignore all call to and return from simulating procedures except

for calls to select, calls call ` m simulation to the simulation of a call to m and calls
return `end m simulation to the simulation of a return from m. While filtering events we
must keep their order.

Finally, two traces tpar are tsim equivalent when filtered, if replacing:

• all (t, call m ) with call select [lptid, lpct]; call call ` m simulation t ;

• all (t, return m) with call select [lptid, lpct]; call return `end m simulation t ;

• all (t, read l n v) with call select [lptid, lpct]; read l n v ;

• all (t,write l n v) with call select [lptid, lpct]; write l n v ;

• all (t, τ) with call select [lptid, lpct] ;

• all (t, atomic (aseq)) with call select [lptid, lpct]; replace(aseq)
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in tpar , we obtain tsim . And if by the opposite operation on tsim we obtain tpar . The
replace(aseq) operation consists in performing the same replacement operation in aseq , but
without adding the select actions.

4.2 Correctness of the simulation

Theorem 1 (Correct simulation). Let progpar be a safe parallel program and progsim its
simulating program, σinit

par an initial state of progpar and σinit
sim an initial state of progsim .

From σinit
sim , we can reach, by executing the initialization sequence cinit , a sequential state

σ0
sim equivalent to σinit

par (by the definition previously explained).
For all state σpar reachable from σinit

par , there exists an equivalent state σsim reachable from
σ0

sim with an equivalent trace (Forward simulation).
For all state σsim reachable from σ0

sim , there exists an equivalent state σpar reachable from
σinit

par with an equivalent trace (Backward simulation).

The different parts of this theorem will be later proved, we first give some intuitions
about the proof. The proof of this theorem is based on two observations about the parallel
semantics and its translation to the simulating program.

The first one is that all the semantics is completely deterministic except for the choice of
the executed thread which is not an operation of the program. Equivalently, in the simulating
program, the only operation that is not deterministic is the call to the select procedure that
models the non-deterministic behavior of the parallel semantic rules.

The second observation is the fact that once the parallel semantics has selected a thread,
the reduction is delegated to the sequential semantics that is deterministic. The corre-
sponding simulating code, that solves the program counter and execute the corresponding
simulating procedure, is also deterministic. So, for any sequential operation, the generated
simulating code is deterministic. Now, if we prove a forward simulation for a transformation
and the resulting code is deterministic, then we also proved the transformation respects a
backward simulation [17].

The proof of the theorem is performed by induction on traces. A step of this induction is
illustrated by the figure 13. For the forward simulation, the induction is on the instructions,
for the backward simulation, on the number of interleaving loop executions.

The transition from σsim to σsim:t corresponds to the evaluation of the loop condition,
followed by the operation select noted cselect . It models the choice of a thread, if it exists
one, performed by the parallel semantics.

The transition from σpar to σ′par is the execution of the instruction, for a given thread t
chosen by the parallel semantics, in the sequential semantics. The transition between σsim:t

and σ′sim:t corresponds to the reduction of the sequence csim :

1 tid := ptid[0];

2 tmp := pct;

3 stmt := tmp[tid];

4

5 switch stmt is [
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σ′par

σpar

σ′sim

σ′sim:t

σsim:t

σsim

select a thread cselect

instruction simulation csim

evaluation of the loop condition ctermination

Figure 13: Simulation relation

6 ∀m ∈M,∀instr ``next ∈ m,
7 ` : [ instrstmt type`_simulation (tid) ]

8 ]

The transition from σ′sim:t to σ′sim corresponds to the reevaluation of the conditional of the
loop, i.e. the evaluation of each program counter by the sequence of instructions ctermination .

4.2.1 Initialization

Lemma 2 (Initialization). Let progpar be a safe parallel program and progsim its simulating
program, σinit

par an initial state of progpar , and σinit
sim an initial state of prog sim . From σinit

sim ,
we can reach, by the execution of the initialization sequence cinit , a sequential state σ0

sim

equivalent to σinit
par .

Proof. An initial state of the simulation is :

((interleavings, ρsim , cinit ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)

We also suppose that ηpar
sim = ηpar and that ηsim

sim contains correctly allocated simulation
blocks for local variables (cf. section 3.9). The part (1) of the equivalence is respected.

An initial state of progpar is: (stacks init , η
init
par ) where

∀t ∈ T. stacks init(t) = [(mains (t), ∅, body (mains (t)))]

The equivalence (2) is then respected.
The sequence cinit follows the following scheme.

1 tmp:=pct;
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2 ∀t ∈ [0,#tid [, tmp[t]:=begin(mains (t));
3 ∀t ∈ [0,#tid [, tmp:=from(mains (t)); tmp[t] := 0;

4 terminated:=false;

Applying the rule [assign] to get the address pct in tmp, and then the successive [read]
rules for each program counter, we ensure that for ηsim

sim , (3a) is respected as identifiers of the
first instructions of bodies are different of 0 if the body is not empty, and equal to 0 else, we
have (3b).

Then, for each thread, we can place the pointer on from(mains (t)) (with the rule [assign]
and then use [read] to ensure that the return program point is correctly placed and ensure
that for ηsim

sim , (4) is verified.
We finally apply [assign] for the initialization of terminated. The program counters are

different of 0 and the resulting state σ0
sim is:

((interleavings, ρsim , {while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)

(5) is verified and our lemma is proved.

4.2.2 Forward simulation

Lemma 3 (Forward simulation on a single step). Let progpar be a safe parallel program and
progsim its simulating program, σpar and σ′par two parallel states, σsim a state equivalent to
σpar , and (t, apar) an action such that:

progpar ` σpar
(t,apar )−−−−→ σ′par

then there exists a trace tr such that trname is equivalent to [(t, apar)] and:

progsim ` σsim
tr−−−−−→

∗
σ′sim

and σ′sim is equivalent to σ′par .

Proof. By the equivalence relation, we know that stsim is of the form (omitting the name
of the procedure):

((. . . , ρsim , {while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)

In the parallel semantics, we perform a step of reduction for the thread t, so its stack is not
empty, and by (3a), we know that ηsim

sim [t](pct) 6= 0, and consequently, by 5, ρsim(terminated) =
false. By [while : true] we get the simulating program state:

((. . . , ρsim , cselect ++ csim ++ ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)

We then perform the reduction [select]. It generates an action call select [lptid, lpct] that
places t at the address ptid, t being a allowed choice for select since ηsim

sim [t](pct) 6= 0. The
resulting state is:

((. . . , ρsim , csim ++ ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′sim)
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with η′sim(ptid, 0) = t and tr of the form (call select [lptid, lpct]) :: trname′.
At this step of the proof, we perform a case analysis depending on the executed instruc-

tion. We will explain this cases later. Let us admit, at the moment, the lemma 4.

Lemma 4 (Forward simulation of an instruction). Let i be an instruction and csim its
simulating procedure. From:

((. . . , ρsim , csim ++ ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′sim)

The execution of csim reaches a state:

((. . . , ρsim , ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′′sim)

such that (1), (2), (3a), (3b) and (4) of the equivalence with σ′par are verified, and the
execution of csim produce a trace tr ′ that guarantees that [(t, apar)], the action generated by
i, is equivalent to (call select [lptid, lpct]) :: tr ′

The execution of ctermination updates the variable terminated by successively comparing
the program counters to 0. As we maintained (3a) and (3b) we reach a state:

((. . . , ρsim , {while ¬terminated do (cselect ++ csim ++ ctermination)}), η′′sim)

such that (5) is verified. Moreover, actions generated during this loop are reads in ηsim
sim and

τ -actions (that are filtered).
We reach from a state σsim equivalent to σpar , a new state σ′sim equivalent to σ′par with a

trace tr equivalent to [(t, apar)].

4.2.3 Backward simulation

Lemma 5 (Backward simulation on a single step). Let progsim be the simulating program
of a safe parallel program progpar , σsim and σ′sim two sequential states, σpar a parallel state
equivalent to σsim , tr = (call select [lptid, lpct]) :: tr ′ a trace such that:

progsim ` σsim
tr−−−−−→

∗
σ′sim

and tr ′ does not contain call action to select, then it exists an action (t, apar) such that
[(t, apar)] is equivalent to tr and;

progpar ` σpar
(t,apar )−−−−→ σ′par

and σ′par is equivalent to σ′sim .

Proof. As σsim ∼ σpar , σsim is of the form:

((. . . , ρsim , {while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)
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The simulation builds a trace tr = (call select [lptid, lpct]) :: tr ′ so the condition of the
loop is evaluated to true (else we would not execute the loop, and the first action of the trace
would not be realized). By the rule [while : true] the resulting state is:

((. . . , ρsim , cselect ++ csim ++ ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)

and we know that it exists t such that ηsim
sim (pct) 6= 0. By (3a), we know that in the original

program, it exists a thread t such that stacks (t) is not empty.
In the simulating program, we then execute the thread selection instruction and we reach

a state:(
(. . . , ρsim , csim ++ ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η1sim

)
such that η1sim(ptid, 0) = t, moreover by (3b), we know the identifier ` of the instruction to

execute, and we know that in the original program, the next instruction to be performed by
t is instr ``next .

As progpar is safe, it does not block, the instruction instr ``next of t can be executed, and
there exists a new parallel state σ′par , reached with an action (t, apar). By lemma 3, we
know that there exists a simulated state σ′sim? equivalent to σ′par reached from σsim with a
trace tr f equivalent to [(t, apar)]. This trace tr f starts with an action call select [lptid, lpct]
equivalent to the one produced for tr and represents the execution of instr ``next by t, that
is also simulated by our program progsim . We can deduce that σ′sim? = σ′sim . As σ′par is
equivalent to σ′sim?, it is also equivalent to σ′sim . Moreover tr = tr f , tr f is equivalent to
[(t, apar)], so tr is equivalent to [(t, apar)].

4.2.4 Proof of the simulation theorem

Theorem 1. Let progpar be a safe parallel program and progsim its simulating program, σinit
par

an initial state of progpar and σinit
sim an initial state of progsim .

(1) From σinit
sim , we can reach, by executing the initialization sequence cinit , a sequential

state σ0
sim equivalent to σinit

par (by the definition previously explained).
(2) For all state σpar reachable from σinit

par , there exists an equivalent state σsim reachable
from σ0

sim with an equivalent trace. (Forward simulaton)
(3) For all state σsim reachable from σ0

sim , there exists an equivalent state σpar reachable
from σinit

par with an equivalent trace. (Backward simulation)

Proof. (1) is proved using lemma 2.
(2) is proved by induction on the list of instruction to execute using the lemma 3.
(3) is proved by induction on the number of iteration of the interleaving loop using the

lemma 5.

4.2.5 Termination

Lemma 6 (Termination (forward simulation)). Let progpar be a safe parallel program and
progsim its simulating program, σinit

par an initial state of progpar and σinit
sim an initial state of

the simulation.
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Form σinit
sim can reach, by executing the initialization sequence cinit a sequential state σ0

sim

equivalent to σinit
par .

For all state σfinal
par reachable from σinit

par , there exists a state σsim equivalent to σfinal
par , reach-

able from σ0
sim such that from σsim , we reach a final state σfinal

sim .

Proof. By the lemma 2, we can reach σ0
sim .

By the theorem 1, we can reach, in the simulation, a state σsim equivalent to σfinal
par . In

this case, according to (3b):
∀t ∈ T. ηsim

sim [t](pct) = 0

and by (5), ρsim(terminated) = vfalse, so the state is:

((. . . , ρsim , {while ¬terminated do (cselect ++ csim ++ ctermination)}), ηsim)

is reduced (using [while : false]) in:

((. . . , ρsim , {}), ηsim)

and then (using [return]):
([], ηsim)

which is a final state.

4.3 Forward simulation of instructions

In this section we the lemma 4 for each type of instruction. We come back to the context
of the proof of the forward simulation, and we want to prove that for an action (t, apar) of
an instruction i that brings the program from σpar to σ′par , we can reach, from a state σsim

equivalent to σpar , by the execution of csim of i, with a trace tr equivalent to [(t, apar)], a
new state σ′sim equivalent to σ′par .

After the beginning of the proof (evaluation of the loop condition and execution of thread
selection), we are in a simulation state:

((. . . , ρsim , csim ++ ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′sim)

where η′sim(ptid, 0) = t, with a generated trace [call select [lptid, lpct]] and we supposed
that we could, by the execution of bsim , reach a state:

((. . . , ρsim , ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′′sim)

with a trace tr ′ such that: tr = (call select [lptid, lpct]) :: tr ′ equivalent to [(t, apar)], and
this state respects the equivalence with σ′par for the parts (1), (2), (3a), (3b) and (4) ((5)
being ensured by the execution of the end of the loop body ctermination).

We now want to prove that csim respects our assumption for any atomic instruction to
execute.

csim is of the form :
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1 select#tid(ptid, pct);
2 tmp:=ptid; tid:=tmp[0]; tmp:=pct; aux:=tmp[tid];
3 switch aux is { ` : toName(`)(tid) }

For any instruction, the execution of the load of the thread identifier and the resolution
of the program counter, and the call to the corresponding simulating procedure, proceeds in
a similar way. We unfold this part of the proof before considering each specific instruction.

Before executing csim , the state is:

((. . . , ρsim , csim ++ ctermination ++{while ¬terminated do (cselectcsim ++ ctermination)}), η′sim)

In a first time, we load the value at the memory location ptid in tid ([write] rule). Then,
we load the value a the memory location pct for the thread tid ([write] rule). Finally we solve
this program counter to get the identifier of the procedure to call by successive conditional
instructions ([if : false] rule) until we reach the right one ([if : true] rule), adding at the
head of the instruction list the call to the considered instruction, which brings us to the
state:

((. . . , ρ′sim , toName(`)(tid) ++ ctermination ++{while ¬terminated do (cselectcsim ++ ctermination)}), η′sim)

where ρ′sim = ρsim [tid 7→ t][aux 7→ id].
The call of the procedure produces an action call toName(`) t, and a new context on the

top of the stack (we ignore the tail of the stack in this formulation):

((toName(`), ∅[tid 7→ t], body(toName(`))) · . . . , η′sim)

During all these reductions, events are τ -actions and reads from the part ηsim
sim of ρsim ,

that are filtered.
By now, we show equivalence for each instruction, reaching the state:

((. . . , ρsim , ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′′sim)

in the simulation.
In the rest of this section, we name:

• ηpar , the heap of the original program before the execution of the instruction,

• ηpar , the heap of the original program after the execution of the instruction,

• ρpar :t, the local environment of t before the instruction,

• ρpar :t, the local environment of t after the instruction.
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4.3.1 Local assignment

We recall the rule of assignment:

P ` (m, ρ, (x := e; c)) · s, η τ−−−−−−−→ (m, ρ[x 7→ v], c) · s, η
[assign] if JeKρ = v

In this instruction, the expression is composed of local variable and of constant values.
We note x1 to xn the variables that compose the expression (that are not x itself, if it is part
of the expression), and v1 to vn their values (if the step is performed, e can be evaluated so
these values are defined).

Before the simulation operation, our assumption is that the state is correctly simulated.
So, for any variable xi of value vi in the original program, ηsim

sim [t](&xi) = vi.
Our state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t].
And the body of the procedure contains the instructions of the simulation, so successive

pairs (a):

1 tmp := &xi ;

2 xi := tmp[tid] ;

for each variable of e, followed by the write of x (b):

1 tmp := &x ;

2 tmp[tid] := e ;

and finally the move of the program counter to the next instruction:

1 tmp := pct ;

2 tmp[tid] := `next ;

After the execution of (a), we have updated ρsim such that ∀x ∈ e.ρsim(x) = vi since
we write each in xi, the value vi that we find in the memory according to the simulation
(ηsim

sim
′(&xi, t) = vi).

We then perform (b), the write of the new value of x at its simulating memory location.
Since ∀x ∈ e.ρsim(x) = vi, we have:

JeKρ′sim = JeKρpar :t = ve

Consequently, if after the execution of the original code, we have ρ′par :t(x) = v, we have in the
simulation ηsim

sim
′′(&x, t) = v that ensures that we maintain the part (2) of the equivalence.

Finally (c), the program counter is updated to the identifier of the next instruction. After
the execution of the assignment, the parallel program state reduced to t is:

ηpar , ((m, ρ[x 7→ v], c) · s)

with ηpar = η′par .

31



In the simulating program, the program counter now points to the simulation procedure
of the first instruction of c, if it exists, else on the return simulation of m, that maintains the
part (3a) of the relation. In the original code, the stack is not emptied by the instruction
(even if it was the last instruction, since we have to execute the return operation), the
identifier is different of 0, ensuring (3b).

The part (1) of the relation is maintained since the execution of the original program
does not modify ηpar , and the simulating program does not modify ηpar

sim
′. So ηpar = η′par and

equivalently ηpar
sim
′ = ηpar

sim
′′.

The relation (4) is maintained since the execution of the original program do not modify
the call stack, and our simulation code do not modify from(m).

It brings us to a new state:

((toName(`), ρ′sim , {}) · . . . , η′′sim)

and then by the procedure return, to:

((. . . , ρsim , ctermination ++{while ¬terminated do (cselect ++ csim ++ ctermination)}), η′′sim)

In the execution of the original program, a τ -action is generated, So (t, apar) = (t, τ).
tr = (call select [lptid, lpct]) :: tr ′, and tr ′ = [] since all actions generated by csim are in
ηsim

sim
′ and these actions are filtered. The traces are equivalent.

4.3.2 Memory load

We recall the rule of memory load (sightly adapted for readability):

P ` (m, ρ, (x := p[o]; c)) · s, η read l n v−−−−−−−−→ (m, ρ[x 7→ v], c) · s, η
[read] if JoKρ = n, ρ(p) = l, n < mem (l), η(l)(n) = v

We recall that after simulating procedure call, the simulating state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t]. We do not explain the proof of the parts (3a), (3b) and (4) of the
equivalence since it is exactly the same proof that we have performed for the assignment.

The list of instructions contains:

1 loads(variables(o)) ;

2 load(p) ;

3 x := p[o] ;

4 tmp := &x ;

5 tmp[tid] := x ;

The load of variables of o and of the local variable p is equivalent to the one used in the
assignment. After these instructions, for each xi of o, ρ′sim(xi) = vi if ρpar :t(xi) = vi and
equivalently of the pointer p : ρ′sim(p) = l if ρpar :t(p) = l.
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Exactly like we had for e in the assignment, we have:

JoKρ′sim = JoKρpar :t = n

After the execution of the read in the original code, the heap ηpar is not modified, and
in the simulation ηpar

sim
′ is not modified. We only access to the address &x that is in ηsim

sim
′,

which is disjoint from ηpar
sim
′. Equivalence (1) is maintained.

By
JoKρ′sim = JoKρpar :t = n

and ρ′sim(p) = ρpar :t(p) = l, the instruction x := p[o] produce an action read l n v equiva-
lent to the one produced by the original program since (1) is maintained, ηpar(l, n) = v and
ηsim(l, n)′ = v, l being in ηpar

sim
′.

Consequently, the write performed at &x for the index tid of the value x restores the part
(2) of the state equivalence since ρ′par :t(x) = ηsim

sim
′′[t](x).

As mentioned, the proof of (3a), (3b) and (4) is equivalent to the one explained in the
assignment.

In the execution of the original program, a read action is generated. So (t, apar) =
(t, read l n v). tr = call select [lptid, lpct] :: tr ′ and tr ′ = [read l n v] since all other actions
are filtered, which ensures the trace equivalence.

4.3.3 Memory store

We recall the rule of memory store (sightly adapted for readability):

P ` (m, ρ, (p[o] := e; c)) · s, η write l n v−−−−−−−−−→ (m, ρ, c) · s, η[(l, o) 7→ v]
[write] if JeKρ = v, JoKρ = n, ρ(p) = l, n < mem (l)

We recall that after simulating procedure call, the simulating state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t]. We do not explain the proof of the parts (3a), (3b) and (4) of the
equivalence since it is exactly the same proof that we have performed for the assignment.

1 loads(variables(e)) ;

2 loads(variables(o)) ;

3 load(p) ;

4 p[o] := e ;

For each local variables x of e, o and p, we load it new local variables x in the simulating
procedure. Consequently after these loads, we have:

• ∀x ∈ variables(e).ρ′sim(x) = v with ρpar :t(x) = v ;

• ∀x ∈ variables(o).ρ′sim(x) = v with ρpar :t(x) = v ;

• ρ′sim(p) = l avec ρpar :t(p) = l
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So, JeKρ′sim = JeKρpar :t = v, JoKρ′sim = JoKρpar :t = n and JpKρ′sim = JpKρpar :t = l. The operation
p[o] := e in the simulating code produce the action same write l n v produced by the
original code execution. This operation is not filtered in the original program, nor in the
simulating one, since it is performed in ηpar

sim
′. The trace equivalence is maintained.

Moreover, the only update in the global state with this simulation phase is in ηpar
sim
′ for

the simulating program and in ηpar for the original one. This update is equivalent (same
action on the memory). (1) is maintained.

The local environment of t is not modified in the original program nor ηsim
sim
′ in the

simulating one, (2) is maintained.
In the execution of the original program, a write action is generated, so (t, apar) =

(t,write l n v). tr = call select [lptid, lpct] :: tr ′ and tr ′ = [write l n v] since all other
actions are filtered. The trace equivalence is maintained.

4.3.4 Conditional instruction

We recall the rule of conditional:

P ` (m, ρ, (if e then ct else cf ; c)) · s, η τ−−−−−−−→ (m, ρ, (ct ++ c)) · s, η
[if :true] if JeKρ = true

P ` (m, ρ, (if e then ct else cf ; c)) · s, η τ−−−−−−−→ (m, ρ, (cf ++ c)) · s, η
[if :false] if JeKρ = false

We recall that after simulating procedure call, the simulating state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t]. The list of instructions contains (according to b1 and b2 in the
original code) the instructions:

1 loads(variables(e)) ;

2 tmp := pct ;

3 if e then

4 ct = {} →
5 tmp[tid] := `next ;

6 ct = instr `
′

`′next
; →

7 tmp[tid] := `′ ;
8 else

9 cf = []→
10 tmp[tid] := `next ;

11 cf = instr `
′

`′next
; →

12 tmp[tid] := `′ ;

In a first time, we load the local variables of e from ηsim
sim
′. Equivalently to the assignment,

we know that:
JeKρsim = JeKρpar :t = v
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As these evaluation are equivalent, the executions of the original program and the simulating
one follow the same branches for equivalent environments.

The obtained state after this evaluation in the original program is

• ηpar , ((m, ρ, (ct++ c)) · s) or

• ηpar , ((m, ρ, (cf++ c)) · s)

For each branch, either the body is empty or it is not. So either the new state is cchosen ++ c
or simply c, c being possibly empty.

If the chosen bloc is not empty, the program counter now points to the first instruction
of the block, else, it is moved to the first instruction of c (that we assume to be correctly
computed by the control flow graph). We reach the first instruction to execute, or the end
of the procedure (end(m)). We ensure (3a), and (3b) as we do not pop context from the
stack.

ηpar and ηpar
sim
′ are not modified, so (1) is maintained. We do not pop a context in the

original program, and we do not write from( ), so (4) is maintained. Finally, we do not
modify local variables in the original program and we do not modify ηsim

sim in the simulation,
so (2) is also maintained.

In the original program, a τ -action is generated, so (t, apar) = (t, τ). tr = (call select [lptid, lpct]) ::
tr ′, and tr ′ = [] since all actions of csim are filtered. We ensure the traces equivalence.

4.3.5 Loop

We recall the rule of loop:

P ` (m, ρ, (while e do cbody ; c)) · s, η τ−−−−−−−→ (m, ρ, (cbody ++while e do cbody ; c)) · s, η
[while:true] if JeKρ = true

P ` (m, ρ, (while e do cbody ; c)) · s, η τ−−−−−−−→ (m, ρ, c) · s, η
[while:false] if JeKρ = false

We recall that after simulating procedure call, the simulating state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t]. The list of instructions contains:

1 loads(variables(e)) ;

2 tmp := pct ;

3 if e then

4 b = {} → //infinite loop

5 tmp[tid] := ` ;

6 b = instr `
′

`′next
; →

7 tmp[tid] := `′ ;
8 else

9 tmp[tid] := `next ;
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The proof is similar to the proof of the conditional instruction. However, the validity of
the simulation, from the execution order point of view and the trace equivalent is conditioned
by the correct computation of the control flow graph and the fact that the last instruction
of the loop body brings back to the simulation procedure of the loop.

4.3.6 Call

We recall the rule of procedure call:

P ` (m, ρ, (m′(e); c)) · s, η call m′ v−−−−−−−→ (m′, [x 7→ v], cm′) · (m, ρ, c) · s, η
[call] if m′(x)cm′ ∈ P, |x| = |e|, JeKρ = v, m′ 6∈ s

We recall that after simulating procedure call, the simulating state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t]. The list of instructions contains:

1 loads(variables(l)) ;

2 combine(args(m), l, tid) ;

3 tmp := from(m) ;

4 tmp[tid] := `next ;

5 tmp := pct;

6 tmp[tid] := `m ;

We do not modify ηpar in the execution of the original code, and we do not modify ηpar
sim
′

in the execution of the simulating program. The relation (1) is maintained. With the same
reasoning we had for the assignment, we know that after the loads of all local variables, we
have: ∀e ∈ l.JeKρ′sim = JeKρpar :t = v. For each simulation address &vi for the parameters
of m2, we write the value of the evaluation of ei. The combine function produces a list of
instructions:

1 tmp = &args(m)[i];
2 tmp[tid] = ei;

When we call a procedure, the execution of the original program builds a new local envi-
ronment in which each parameter xi receives its argument of value JeiKρpar :t . The generated
instructions will ensure that for each simulating address &xi, for the thread t, we write
ηsim

sim
′′(&xi) = JeiKρpar :t . Since, ∀e ∈ l.JeKρ′sim = JeKρpar :t = v, we maintain the equivalence (2)

when modeling the local context of m2.
Then, we write the identifier `next of the next instruction to execute in from(m2) for the

thread t. A this point, we know that the stack of t contains at least an execution context
(the one we are using). If this context is the only one, by (4), we know that from(m1) = 0,
we have to prove (4) for this call. Now, after the execution of the line 3, ηsim

′′[t](from(m2))
is equal to the identifier of the instruction that follows the call. Assuming that there is no
recursive call, and that procedure return simulations also maintain (4), by induction the
stack is correctly modeled.
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Finally, we move the program counter to the first instruction of m2, and its entire body
is pushed on the stack. We maintain (3a) and (3b).

In the execution of the original program an action call m2 is generated, so (t, apar) =
(t, call m2 ). tr = (call select [lptid, lpct]) :: tr ′ and tr ′ = [call call ` m2 simulation t]
since all other actions are filtered. We also ensure traces equivalence.

4.3.7 Return

We recall the rule of procedure return:

P ` (m, ρ, []) · s, η return m−−−−−−−→ s, η

We recall that after simulating procedure call, the simulating state is:

((toName(`), ρsim , body(toName(`))) · . . . , η′sim)

with ρsim = ∅[tid 7→ t]. The list of instructions contains:

1 end(m)(tid) {

2 tmp := from(m);
3 aux := tmp[tid];

4 tmp := pct;

5 tmp[tid] := aux ;

6 }

We do not modify ηpar in the execution of the original code, and we do not modify ηpar
sim
′

in the execution of the simulating program. The relation (1) is maintained.
Local variables are not modified in the execution of the original program and the simu-

lation do not perform write actions in ηsim
sim
′ for the simulating address of the local variables.

(2) is maintained.
But, an execution context is popped, and the local variables of this context are not

defined anymore. The values in ηpar
sim
′ for these local variables are however still defined, this

is why we only have an implication. To get back an equivalence, we could have a mean to
reinitialize value in the heap to be undefined. As we only consider safe programs, we have
the guarantee that local variables are, in the original program, initialized before being read.
It guarantees that the simulation is still correct, since if the procedure is called again, we
will write ηpar

sim
′ before reading it again.

When we pop the execution context, the previous context is know at the top of the stack,
if this context m′ exists. By (4), we know that from(m) for the current thread contains the
next instruction of m′ to execute. After popping, it is this context that is at the top of the
stack and so the write of the program counter to this value guarantees the part (3a) of the
equivalence.

If the local state only contains one context, by (4), we know that from(m) is 0 and
the program counter is moved to this identifier, guaranteeing that this thread will not be
activated anymore. (3b) is maintained.

37



The implication (4) is maintained since we only pop the first context, so the tail of the
stack is still correctly modeled. If we call m again later, (4) is still maintained since the call
will overwrite from(m).

In the execution of the original program an action return m is generated, so (t, apar) =
(t, returnm ). tr = (call select [lptid, lpct]) :: tr ′ and tr ′ = [call return `end m simulation t]
since all other actions are filtered. We also ensure traces equivalence.

4.3.8 Atomic blocks

Atomic blocks use the ideas of the preceding proofs. Instead of executing a unique step of
simulation, we execute all simulation steps of all instructions of code block.

The equivalence for assignment, read and write is identical to what we already proved.
For conditional instructions, the evaluation is equivalent, however, the execution of the
chosen body is verified by induction on the correction execution of the translation of the
atomic bloc. The idea is the same for the loop, but we also have to verify again the correct
evaluation of the local variables at the end of the loop body.

Procedure calls first build the call context, then simulate the instruction and finally
simulate the return. It generates the same state updates that the ones mentioned in previous
proofs. By using the simulation procedure for call and return we ensure that we generate
the same actions for the traces equivalence.

5 Towards a Mechanized Proof of Correctness

We aim at mechanizing the proof of correctness using the proof assistant Coq [23, 5]. A
first step to do so is to formalize both languages and their semantics and to formalize the
transformation. The current state of the development1 includes this first step. It consists of
a bit more than 3,000 lines of Coq, about one third being proofs.

We have roughly 20% devoted to supporting definitions and results (about quite general
data types and data structures used in the rest of the formalization), 50% to the syntax
and semantics of the two programming languages (an about 50% of it comes from another
project with only slight modifications), and the remaining 30% is about the formalization of
the transformation and the statement of the correctness theorem.

The syntax and semantics of the languages is a rather usual formalization. As we seek
reuse, we modeled the sequential semantics so that it is parametrized by a set of “external
procedure” definitions as it is found is some programming languages where the signatures of
some procedures are given but their implementation is done in a foreign language. Here some
procedures are not defined in the programming language but are axiomatized by additional
semantic rules. select is defined by such an external procedure definition.

One important difference between the program definitions on paper and in Coq, is that
in the mechanized version, all should be explicit. In particular, in Section 2, we let implicit
that procedure names should not be duplicated in the list of procedure definitions. This

1Available at http://frederic.loulergue.eu/ftp/cconc2seq-0.1alpha.tar.gz
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property should be part of the Coq version. Another important property we need to have
for programs is that procedure calls are valid, i.e. the name used in the call is indeed a name
of a procedure defined in the program. Parallel programs are also labelled. We require that
programs given as input to the transformation are correctly labelled. In particular, if they
are not, function names generated through the transformation will not be unique, as they
use the label of the original statement in the parallel program.

The validity of procedure calls is used to define a relation on procedures. For two proce-
dures p1 and p2 of a program P , we have p1 ≺ p2 if the body of p2 contains a call to p1. To
ensure that all procedures of a program are non-recursive, if is sufficient to require that ≺ is
well-founded. This is necessary to require this property for two reasons. First the simplified
way we simulate the call stack in the transformed code requires it, second Coq requires that
all functions are terminating. It automatically checks the termination of recursive functions
when the recursive calls are done on syntactically sub-terms of one of the arguments of the
function. In other cases, a proof of termination should be given.

In particular, the main functions defined to implement the code transformation need such
proof of termination. More specifically, one can see from the definition of inlining function,
necessary to implement the transformation of atomic blocks, that termination is non trivial.
Actually only the fact that ≺ is supposed to be well-founded allows to prove it terminates.

As we require some properties in program definitions, we also should prove that the
code and memory definitions we obtain from the transformation satisfy the properties of a
sequential program. These proofs are conceptually simple, but their implementation in Coq
is a bit tedious because they need properties about the functions defined using an explicit
proof of termination. This kind of functions is usually heavier to use.

The next step of the mechanization is to define the equivalence between states: having the
properties about the uniqueness of procedure names and correct labelling is very important
in this regard. The final step will be to prove the correctness. For this we plan to prove
semantic preservation for each case of input statement: this will be eased by the fact that the
target language is deterministic. This semantic preservation results will then be combined
to proof the correctness of the simulation loop where select introduces non-determinism.

6 Related Work

Many model checking tools for concurrent programs are based on code sequentialization.
In [22], Qadeer and Wu present, for the C language, a transformation from parallel to
sequential code that allows the use of existing model checkers for sequential systems. This
bounded model checking has been generalized to any context bounds with CSeq [15] and
dynamic thread creation [9]. While bounded, such an approach is still efficient to find bugs
in concurrent programs [18]. Limiting the comparison to the code transformation, these
approaches are a different of ours since in each thread, functions are inlined in the main
function, loops are unrolled and that it keeps k copies of the global memory for a bound of
k thread context switching.

To avoid creating these copies, allow dynamic memory allocation, and improve perfor-
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mances Fisher et al. propose a lazy version of these tools [11, 12] called LazySeq that obtains
high performances on known benchmarks. Other research direction choose to bound memory
accesses instead of context switching [24].

While efficient to find bugs, these approaches are not suited to prove safety, which is
the main reason we aimed at support the Wp plugin of Frama-C. In [19], Nguyen et al.
further generalize LazySeq to unbounded concurrent programs allowing safety checking. The
approach for code generation is somehow dual to ours: instead of splitting original functions
into smaller functions for each statement and adding the context switching management in
an interleaving loop, context switching is modeled inside each function to obtain a behavior
where each call to the function will execute a step of execution and then return (and where
local variables are now static).

All these approaches consider a sequentially consistent memory model, as we do, other
research directions aim at also support weaker behaviors [25, 1].

Why3 is a deductive verification tool [8] that proposes Why-ML, a language for writing
programs and assertions, and a verification condition generator as well as translations of
these conditions as input to a wide variety of automated provers. Previous versions of
Frama-C used Why for deductive verification. Current versions of Frama-C have their
own verification condition generator Wp but can still use the translation capabilities of
Why3. This is why the work of Fortin and Gava is closely related to ours by the context of the
verification framework. They also used program transformation to perform deductive proof
of bulk synchronous parallel [26] programs [10]. Why-ML is extended with BSP primitives
(including for the assertion language), the resulting language is called BSP-Why-ML. In
this work, the original annotated program, written in BSP-Why-ML, is compiled into an
equivalent sequential Why-ML program. The deductive proof is then performed using the
original Why-ML VCGen, that is designed for sequential programs. The transformation is
written and proved using the Coq proof assistant. If the software context is very close to our
proposal, the parallelism models are very different. A BSP program is a sequence of super-
steps, and the parallelism occurs inside each super-step. Inside a super-step each thread
computes using only the data it holds in memory then communicate with other thread but
the result of these communications (message passing) are not effective before the end of the
super-step by a synchronization barrier. This constrained form of parallelism as well as the
fact that BSP is a distributed memory model, allows a code transformation that is very
different from the one we propose.

The way we transform code and specification makes the use of WP after the transfor-
mation closely related to Owicki-Gries method [21]. Actually, for each instruction, we have
indeed to ensure that it is compatible with any state of the global system that can be reached
at some program point. This property is modeled by a global invariant. Unlike [21], this
compatibility is not verified by visiting the proof tree. Owicki-Gries method has been formal-
ized in Isabelle/HOL [20] and one of its variants has been used for verification of operating
systems [2, 3]. So, even if it can generate a lot of verification conditions, it is still usable in
practice for real-life code.
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7 Conclusion

The contribution of this paper is the correctness proof of the principle of a code transfor-
mation used to verify concurrent C code through a sequential C program that simulates it,
in the context of a sequentially consistent memory model. This proof is done under the
assumption that the source program does not allocate memory and does not contain any
recursive call.

This proof has three main concerns:

• the heap of the source program should be correctly replicated in the target simulation
program;

• the local environments of the source program should be correctly simulated by the
global heap of the target program,

• the execution context of the source program should be correctly modelled by the mem-
ory location that stores a kind of program counter and the memory locations that
model a simplified call stack.

The proof relies on the fact that in a way the simulating code mimics the operational
semantics of the concurrent program with its own sequential instructions, but in a simplified
version (in particular because we do not really need to simulate a call stack). Moreover all
the simulating code is deterministic but the code that simulates thread switching.

We aim at the mechanization of this proof in the interactive theorem prover Coq. A
non-trivial first step was to formalize the languages and their semantics, as well as the
transformation. The next step will be to write the correctness proof itself with Coq.

The conc2seq plugin does not only transform the code to verify. conc2seq provides
extensions to the acsl behavioral specification language in order to write contracts for
concurrent C programs. These assertions are also transformed by the plugin. Ultimately we
would like to formalize axiomatic semantics for the parallel and sequential languages, and
verify that the transformation of both code and assertions is such that a proof (using the
sequential axiomatic semantics) of a simulating program allows to build a proof (using the
parallel axiomatic semantics) of the source concurrent program. This is however a long term
goal.

Future work also includes extensions to the plugin itself that could also be verified as
extensions of the current formal framework. For example our method is valid to verify
programs under the assumption that procedures are non recursive. Sometimes it may be
too limiting. It is therefore interesting to try to lift this limitation. It would require to
simulate more precisely the execution context of each thread. This would complexity the
correctness proof of the transformation, but we believe the proof would still be manageable,
in particular using Coq. However it is unclear whether such an extension would allow the
practical analysis of simulating programs and hence of recursive parallel programs. The
states of simulating programs would be more complex and the automated provers using in
combination to the Frama-C Wp plugin (for deductive verification) may have difficulties
to discharge the generated verification conditions.
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