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Urban computing intends to provide guidance to solve problems in big cities such as pollution, energy

consumption, and human mobility. These are, however, difficult problems with several variables interacting in

complex patterns. Such complex systems are often represented as graphs, taking advantage of the flexibility of

the model and the availability of network science tools for analysis. In this context, expressive query languages

capable of tackling graph analysis problems on a customized context are essential.

This paper presents a context-driven query system for urban computing where users are responsible for

defining their own restrictions over which datalog-like queries are built. Instead of imposing constraints on

databases, our goal is to filter consistent data during the query process. Our query language is able to express

aggregates in recursive rules, allowing to it capture network properties typical of graph analysis. This paper

presents our query system and analyzes its capabilities using use cases in Urban Computing.

1 INTRODUCTION

Urban computing deals with integrated data acquired from a variety of traditional data sources as well

as from sensors and other devices [12]. A graph-based data model is usually adopted for representing

datasets involved in urban computing, from traffic and points of interest, to more conventional data,

such as population statistics. Therefore, planning and solving problems in cities’ context rely on

analysing and extracting knowledge from graphs which require the ability to compute graph queries

such as reachability or shortest paths, or, more generally, queries imposing a repeated computation

over the graph until reaching a threshold or fixpoint.

Defining a declarative, powerful query language capable of expressing useful queries in this context

is still a challenge. Datalog (a recursive and declarative query language) has been proposed as an

option for data scientists to succinctly describe iterative graph analytics (see, for instance [2, 22]).

Possible datalog extensions allow group-by and aggregate queries which are the basis for building

more sophisticate computations such as Page Rank [8].
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Disastrous results can be obtained from decisions made on the basis of insights built over invalid

data. In other words, if the data being analysed is not accurate, the resulting analysis is misleading.

Indeed as the “GIGO (Garbage In, Garbage Out) principle is not sustainable” [24], ensuring graph

analysis accuracy becomes a major issue; stressing the importance of data quality, initially neglected

in the big data context in the name of velocity and volume.

Indeed, answering a user’s query means offering him appropriate and accurate results, taking into

account his needs and his context. Constraints have always been a tool for specifying the requirements

of data consistency (based on semantic, shape or context restrictions). They can naturally be used as

the instrument of query personalization and user’s quality exigences.

This paper merges the validity-checking-while-querying process proposed in [9, 10] with operators

introduced in [14] and built to allow graph analysis. In this way, the paper presents a declarative

query language capable of expressing graph analytic queries, i.e., iterative or recursive queries whose
semantics involves constraint checking together with recurrent computation. Thus, it generalizes the

previous approaches in [9, 10, 14] focusing on the semantics of this query language extension which

ensures validity w.r.t. a given set of constraints.
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Fig. 1. General System Architecture.

Figure1 illustrates a general system architecture where our validator appears as a top (blue) layer

over a query-evaluator. The validator filters valid answers w.r.t. a given context in two ways discussed

in [9]: (1) by rewriting queries w.r.t. this context or (2) when the evaluator has insufficient capabilities

to evaluate the rewritten query, by establishing a dialogue between validator and evaluator via

subsequent sub-queries. Either way, the validator ensures that only valid answers are sent to the user.

This architecture can be associated to the cloud data management software stack sketched in [7],

where distributed storage is envisaged. Indeed, as a top layer, our validator can work with different

query evaluators, connected to different mediators to which it adds its filter capabilities.

The current paper focuses on proposing a query language allowing graph analytic queries whose

semantics rely on validity w.r.t. personalised contexts. Thus, to highlight our goal, we ignore, here,

all the considerations concerning query evaluation on a (distributed or centralized) database. We

assume that query answers are generated by a query evaluator which, for this paper, is simulated by

an in-memory program.
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Our work enables a query environment where users specify the context on which queries should

be processed. A user sets his customised context by specifying the (integrity) constraints he imposes

on data. In this way, data quality requisites are placed closer to the data consumers, and become

“everyone’s business"[24].

Our main contribution is the integration of two important concepts dealt separately in other

proposals: (i) constraint checking (which enables context-aware queries) and (ii) query expressiveness

for graph analysis (which enables recursive computations over networks). In this paper, we show the

interplay between these two concepts through practical use cases.

To reach our goal, the aforementioned proposals have been extended, here, in the following aspects:

(i) the non-recursive datalog-like query language proposed in [9, 10] is enhanced to allow recursive
datalog programs as queries which may, now, contain group-by or aggregate sub-queries; (ii) operators

proposed in [14] are expressed through a datalog program, offering a declarative and well-defined

mechanism to explain their semantics and (iii) the query process proposed in [14] includes now a

mechanism for filtering answers according to the user’s context. Even if data sources are not consistent

w.r.t. the given constraints, our system can render the consistent answers (i.e., those which are

computed with data that do not violate any constraint).

Paper Organization: Section 2 illustrates how a querying environment which integrates constraint

checking with a declarative query language can be useful on an urban computing environment.

Section 3 offers preliminaries for the formalization of our approach while Section 4 introduces the

constraints considered in our work. The semantics of our recursive datalog-like query language

allowing constraint checking is presented in Section 5. Section 6 presents an use case. Section 7

discusses some related work while Section 8 concludes our paper.

2 URBAN COMPUTING: QUERIES AND CONTEXTS

As an interdisciplinary field, urban computing deals with many different questions, trying to improve

the quality of densely populated areas, including decision aid to government leaders. In this context,

queries involving transport and strategic placement decisions are usual.

As an example, let us consider the means of transportation in a city like Paris. Figure 2 presents an

extract of the transportation network while Table 1 shows some queries that we will be discussing in

this paper. The transportation network is a graph where each node has the name of a specific place

where a user can find a means of transport (a Metro station, a bus stop, a Batobus stop, a Velib station,
etc). Relation Transp stores these networks. Besides attributes indicating an edge (Xto ,Xf rom) of the

transportation graph, the relation stores information about the means of transport (Xmeans – bus,

underground, boat, bike, etc), the estimated travel time (Xt ime ) and carbon footprint (Xcf p ) for the

graph’s edge. The network is thus a multi-graph; also seen as a superposition of different graphs (one

for each means of transport). Relation Environment stores the facilities (gardens, hospitals, clinics,
car parks, station, restaurants, hotels, . . . ) around a place XplaceName . Other relations contribute with

details of data stored in Transp and Environment.
Queries on such a graph can vary from a simple ’Is it possible to go from Alesia to Montparnasse by

tram? ’ to graph analysis such as the minimal path to go from Gare d’Austerlitz to Saint-Lazare or the
best place for a new public crèche, according to governmental constraints.
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The challenge in proposing a new querying process for graphs is not only on the expression power

of a declarative system, but also in ensuring data quality. Systems adapting query languages to interact

with constraint checkers represent an important step towards monitoring data quality at scale. Our

work fits in this perspective and proposes a querying environment where answers are filtered according

to a given context. The context personalises the query environment, establishing a set of constraints

to be respected. Validity of data is therefore defined w.r.t. a context. Inconsistency on source databases

is possible but answers are filtered and only valid information is returned to the user.

Connexion(Xf rom ,Xto ,Xt ime ,Xcf p ) ← Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xcf p ).

Connexion(Xf rom ,Xto ,Xt ime ,Xcf p ) ← Transp(Xf rom ,Z ,Zmeans ,Zt ime ,Zcf p ),

Connexion(Z ,Xto ,Yt ime ,Ycf p ),

Xt ime = Zt ime + Yt ime , Xcf p = Zcf p + Ycf p .

Q0(Alesia,Xto ,Xcf p ) ← Connexion(Alesia,Xto ,Xt ime ,Xcf p ), (Xt ime <= 20)

Q1(Xf rom ,Xto ,atotalAvT ime ,aAvcf p ) ← aдд(Connexion(Xf rom ,Xto ,Xt ime ,Xcf p ),Xf rom ,Xto ,

atotalAvT ime = AVG(Xt ime ), aAvcf p = AVG(Xcf p )).

Qβ (Xf rom ,Xto , ccf p ) ← aдд(qSetRes (Xf rom ,Xto ,Xcf p , i),Xf rom ,Xto , ccf p = MIN (Xcf p )).

Table 1. Example of queries on a transportation database.

The set of constraints C1 of context Ctx1
c1 Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xcf p ) → Type(Xmeans ,Rail).

c2 Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xcf p ), (Xcf p > 500) → ⊥.

Table 2. User’s context Ctx1 = (C1,G1) on a transportation database.
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Fig. 2. Example of an urban graph.

In Table 2, constraints C1 = {c1, c2} establish the context Ctx1. Our user is only interested in means

of transport using railways (c1). Moreover, he wants paths composed only by edges associated to a

carbon footprint of less then 500cд of CO2 (Table 2, denial constraint c2, values based on [1]).

In this context, consider the conjunctive query Q0 (Table 1): starting from Alesia, where can we go

in less than 20 minutes and what is the carbon print of this path?Q0 involves three rules. The first two

rules compute Connexion, the transitive closure of the graph (i.e., all the paths of a graph). Rule Q0
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just states the maximal time and the starting point of the paths. However, when evaluated on context

Ctx1, Connexion is restricted to be the transitive closure of only the rail transport graph whose edges

respect the indicated carbon footprint limit. Query re-writing techniques can be used to incorporate

user-defined constraints into the body of the query. For instance, our first rule can be re-written as

Connexion(Xf rom ,Xto ,Xt ime ,Xcf p ) ← Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xcf p ), Type(Xmeans ,Rail),

(Xcf p <= 500). Thus, if the first two rules are re-written to incorporate constraints in C1, then only

answers respecting c1 and c2 are generated for Q0. Rewriting algorithms for our conjunctive queries

are presented in [9].

All queries evaluated on Ctx1 are restricted in the same way. Let us consider the group-by (or

aggregation) query Q1 which computes the average travel time and average carbon foot print of

every two nodes. The body of Q1 is composed by a conjunctive sub-query involving Connexion
whose answers are filtered: only valid tuples w.r.t. Ctx1 are taken as input for the aggregate/group-by

operators.

As we will see in Section 5.3, the situation is similar forQβ whose evaluation is based on sub-queries

including qf ollows (Xf rom ,Xto , Xcf p ) ← Transp( Xf rom ,Xto ,Xmeans ,Xt ime ,Xcf p ) and qset (Alesia,Alesia, 0, 0)

whose answers are filtered according to Ctx1 and only then sent as input to other sub-queries taking

part in the computation of Qβ ’s results. In this way, considering Xf rom = Alesia, Qβ computes the

c f p-minimal rail path between Alesia and any other node in the railway graph.

3 BACKGROUND

This section summarizes some basic notions used in this paper. We refer to [3] for more details on

datalog as a query language.

Alphabet. Let A be an alphabet consisting of the following pairwise disjoint sets: const, a countably

infinite set of constant; var an infinite set of variables ranging over const (we useX as an abbreviation

to denote the set {X1, . . . ,Xk } where k > 0); pred, a finite set of predicates, each associated with its

arity.

Atoms. A term is a constant or a variable. An atomic formula (or atom) has one of the forms: (i)

P(t1, ..., tn), where P is an n-ary predicate and t1, ..., tn are terms; (ii) ⊤ (meaning true) or ⊥ (meaning

false); (iii) (t1 op t2), where t1 and t2 are terms and op is a comparison operator (=, <, >, ≤, ≥). A literal
is an atom of the form P(t1, ..., tn). An instantiated or ground literal (also denoted as a fact) is an atom

of form P(u) where u ∈(const)n .

Substitution.A substitution from the set of symbolsE1 to the set of symbolsE2 is a functionh : E1 → E2.

A homomorphism from the set of atoms A1 to the set of atoms A2, both over the same predicate P , is a

substitution h from the terms of A1 to the terms of A2 such that: (i) if t ∈ const, then h(t) = t , and (ii)

if P(t1, ..., tn) ∈ A1, then P(h(t1), ...,h(tn)) ∈ A2. If h is a homomorphism, P(h(t1), ...,h(tn)) is simply

denoted by h(P(t1, ..., tn)). The notion of homomorphism naturally extends to conjunctions of atoms.

Database Schema and Database Instance. A database schema G is a set of predicates in pred. A

database instance D is a set of facts over G.
Datalog. A (datalog) rule r is an expression of the form

R0(u0) ← R1(u1) . . .Rn(un)
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where n ≥ 0, Ri (0 ≤ i ≤ n) are predicate names and ui are free tuple (i.e., may use either variable

or constants) of appropriate arity. The head of r (denoted by head(r )) is the expression R0(u0) and

R1(u1) . . .Rn(un) forms the body (denoted bybody(r )). Rules are safe range, i.e., only variables appearing
in the rule body can appear in the head. A datalog program P is a finite set of datalog rules. Each

predicate occurring only in the body of a rule is an extensional predicate. Each predicate occurring

in the head of some rule in P is an intentional predicate. The extensional database schema, denoted

edb(P), consists of the set of all extensional predicates, whereas the intentional schema idb(P) consists

of all intentional ones. The schema of P is the union of edb(P) and idb(P).

Queries. A (conjuctive) query q of arity n over a given schema is a rule whose head defines the output

of a datalog program. A boolean conjunctive query is a conjunctive query of arity zero.

Query Evaluation. To define the answers of a query, we adopt the semantics of a positive datalog

program in the fixpoint perspective, using a bottom-up evaluation strategy. Thus, for a given program

P, the evaluation starts with the facts in edb(P) and continues until a fixpoint is reached, i.e., no new

facts may be derived for predicates in idb(P). The generation of each new fact is obtained by using the

immediate consequence operator whose definition is recalled below.

Definition 3.1 (Immediate consequence operator). Let P be a datalog program and I be a set of

facts. Let T be an operator over P. We denote by ν a homomorphism ν : var⇒ const. We define

TP(I ) = I ∪ {ν (head(r )) | r ∈ P and ν (body(r )) ⊆ I }. □

The semantics of a datalog program P on an instance I over edb(P) is defined as the fixpoint of

TP, denoted by T ∗
P
(I ). The answer to a query q of arity n over I , denoted as q(I ), is the set of all

n-tuples t ∈constn for which there exists a homomorphism ht : var (body(q)) ⇒ const such that:

(1) each literal L ∈ ht (body(q)) is in T
∗

P∪{q }
(I ), (2) q(t) = ht (head(q)) and (3) ht (head(q)) ∈ T

∗

P∪{q }
(I ).

Technically, the answer false (i.e., a negative answer) for a boolean conjunctive query corresponds

to the empty result set and the answer true (i.e., a positive answer) corresponds to the result set

containing the empty tuple. A positive answer over I is denoted by I |= q. A union of conjunctive

queries (UCQ) Q of arity n is a set of CQ, where each q ∈ Q has the same arity n and uses the same

predicate symbol in the head. The answer to Q over an instance I , denoted as Q(I ), is defined as the

set of tuples {t | there exists q ∈ Q such that t ∈ q(I )}.

A datalog program P is typically viewed as defining a mapping from instances over the edb to

instances over the idb. Our edb concerns a (distributed) database, but, as stated in Section 1, details

concerning the interaction between the validator and the evaluator are out of the scope of this paper.

Therefore, we assume that the global schema on which queries and constraints are built coincides with

the database schema being consulted. Moreover, our database instance D summarizes all available

information coming from data sources (no matter how it is obtained).

4 CONTEXTS AND CONSTRAINTS

Let G be a global schema, and let C be a set of constraints on G. A context Ctx is defined by the pair

(C,G). Queries are defined on G and evaluated on a database instance D. Valid answers are those

respecting context Ctx. Constraints and constraint satisfaction are defined below. Notice that we allow

two different constraint formats.
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(1) Positive constraints (CP ): Each positive constraint has the form

∀X,Y L1(X,Y) → ∃Z L2(X,Z)
where L1 and L2 are predicate symbols.

(2) Negative constraints (CN ): A negative constraint is either of the form
(∀X)((comp(X′) ∧ L(X)) ⇒ ⊥) or (∀X)((comp(X′) ∧ L1(X1) ∧ L2(X2)) ⇒ ⊥) ,

where X1 ∩ X2 , ∅ and comp(X′) is a (possibly empty) comparison formula with variables X′ that all
occur in X, and where L(X), L1(X1) and L2(X2) are atoms.

The left and right hand-sides of a constraint c are respectively denoted by body(c) and head(c).

When no confusion is possible, quantifiers are omitted.

A set I of facts satisfies a constraint c , denoted by I |= c , if for every homomorphism h from the

variables in body(c) into constants in I , the following holds:

− If c is positive: if h(body(c)) is in I then there is an extension h′ of h such that h′(head(c)) is in I .

− If c is negative: if h(comp(X′)) is true in I then depending on c , either h(L(X)) is not in I or one of

the two atoms h(L1(X1)) or h(L2(X2)) is not in I .

Given a set of constraints C, I satisfies C, denoted by I |= C, if for every c in C, I |= c holds.

Example 4.1. Consider the set Ca with:

ca : freeTransp(Xsite ,Z ) → Ecolabel(Z ).

cb : Ecolabel(Z ) → pCheck(Z ,Xo)

which restricts zero-fare public transport to those which have an ecolabel (ca) and establishes that

an ecolabel should have been attested by a pollution checking performed by an official organism (cb ).

The database instance D1 = {freeTransp(Paris,Velib)} violates ca while D2 = {freeTransp(Paris,Velib),

Ecolabel(Velib), pCheck(Velib,EuropeanCommission)} satisfies Ca . □

Positive constraints are linear LAV (local-as-a-view) TGD (Tuple Generating Dependency) – i.e.,
each body and head has a unique atom ([4]). Negative constraints are denial dependencies with one or

two atoms in their bodies.

The computation of the answers of a query q on an instance D, involves the instantiation of body(q).

In our approach, we verify whether the instantiated atoms in body(q) satisfies constraints in C in

order to avoid answers built from facts which violate C. To perform this task, starting with atoms in

body(q), we are inspired by the well-known chase procedure (see [3] for explanations) to generate new
atoms (which are incorporated in the query’s body). The chase on a weakly acyclic [20] set of positive

constraints is the basis of the query rewriting approach used here and presented in [9]. The following

example illustrates this re-writing method.

Example 4.2. Consider again the set Ca of Example 4.1. LetQa(Y ) ← freeTransport(Paris,Y ) be a query

on Ctxa = (Ca ,Ga). Starting with atoms in Qa ’s body, in a chase-based procedure, atoms Ecolabel(Y )
and pCheck(Y , Xo) are produced and added to Qa ’s body. The new, rewritten query to be evaluated

is Qa(Y ) ← freeTransport(Paris,Y ), Ecolabel(Y ), pCheck(Y , Xo) which ensures that answers are filtered

according to Ctxa . □
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5 QUERYINGWITHIN A CONTEXT

This paper extends previous work in [9, 10, 14] towards our goal of providing adequate querying

capabilities in order to support graph analysis tasks and to ensure data quality. Firstly, the notion of

valid conjunctive query introduced in [9, 10] is extended to (recursive) datalog programs (Section 5.1)

and group-by queries (Section 5.2). Then, in Section 5.3, we adapt the Beta-algebra of [14], which offers

an operator capable of representing diverse measurements typical of graph analysis, to our approach.

Our resulting querying environment allows graph analytic queries whose results are valid w.r.t. a

given context.

5.1 Validity

The semantics of a query involving a datalog program is computed by using the immediate consequence

operator and thus, at each iteration, only valid data computed on the previous step should be taken

into account. In other words, data is filtered at each step of the computation.

Example 5.1. Let us consider the first two rules of Table 1 and query Qb (Xf rom ,Alesia,Xt ime ) ←

Connexion(Xf rom ,Alesia,Xt ime ,Xcf p ) on context Ctx1. Assume a database instance Db containing only

the facts: Transp(Montsouris, P .Orleans, tram, 1.5, 159), Transp(P .Orleans, JeanMoulin, tram, 1, 106), Transp(

JeanMoulin,Didot , tram, 1, 106), Transp(Didot ,Alesia,bus, 5, 4528). This instance corresponds to an extract

of the graph illustrated in Figure 2. During the computation of Connexion we obtain Connexion(

Montsouris,Didot , 3.5, 371). Although transport from Didot to Alesia exist in Db , as C1 does not allow

the use of buses, the connection from Montsouris to Alesia cannot be computed. □

The following definitions formalize the notion of validity used in this paper.

Definition 5.2 (Valid instantiated literal). Let Ctx = (C,G) be a context and D a database instance on

G. Let f be an instantiated literal such that f = L0(u) where L0 is a predicate in G. The validity of f on

D, for context Ctx, is recursively defined as follows (we then say that f is valid on D for context Ctx):
Basis step: If predicate L0 is an extensive predicate in D and if there exists h1 such that for all L ∈

h1(T
∗

CP
(f )) then the following conditions hold:

(1) there is a positive answer for q0() ← L on D;

(2) for each c ∈ CN of the form (∀X)((comp(X′) ∧ L1(X)) → ⊥), there is no homomorphism ν such

that ν (L1) = L and ν (comp(X′) is true and

(3) for each c ∈ CN of the form (∀X)((comp(X′) ∧ L1(X1) ∧ L2(X2)) ⇒ ⊥), if there is a homomorphism

ν such that
1 ν (Li (Xi )) = L, then there is no homomorphism ν ′ that extends ν and for which:

(i) ν ′(comp(X′)) is true and
(ii) there is a positive answer for q′() ← ν ′(Li (Xi ).

Recursive step: If predicate L0 is an intensive predicate in P then there exists a rule r ∈ P and a

homomorphism ν such that ν (head(r )) = L0(u) and all atoms in ν (body(r )) are valid. □

Let Valid(f ,Ctx,D) be a function which renders true when f is valid according to Definition 5.2

Otherwise, Valid(f ,Ctx,D) returns f alse .

1
In our notation, if i = 1 then i = 2 and vice-versa.
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Definition 5.3 (Valid answers). Let q be a query which may refer to a query program P. The set of

q’ s valid answers for context Ctx over a database instance D is defined as follows:

valAns (q,Ctx,D) = {t | q(t) ∈ T ∗
(P∪{q })

(D) and Valid(q(t),Ctx,D) }. □

Example 5.4. Suppose the instanceDc = { Transp(Alesia,MoutonDuvernet ,metro, 1, 106), Transp(Mouton-

Duvernet ,Denf ert ,metro, 1.5, 133), Transp(Alesia,MoutonDuvernet ,bus, 4, 2012), Transp(MoutonDuvernet ,

Daдuerre,bus, 2, 1006), Transp(Daдuerre,Denf ert ,bus, 2, 1006), Type(metro,Rail), Type(bus,Diesel) }.Notice

that, in this instance, the Transp relation is an extract of the graph illustrated in Figure 2.

Let Qc (X ) ← Connexion(Alesia,X ,Y ,Z ). The fact f = Connexion(Alesia,MoutonDuvernet , 1, 106) is valid

since constraints c1 and c2 are verified: Dc contains Type(metro,Rail) (Definition 5.2, (1)) and the carbon

footprint between these two stations is inferior to 500 (Definition 5.2, (2)). Moreover Connexion(Alesia,

Denf ert , 2.5, 239) is in the fixpointT ∗
C1

(f ) and satisfy conditions in Definition 5.2-Recursive Step. Thus,

Valid(QcCtx1,Dc ) = {MutonDuvernet ,Denf ert}. Note that, in Example 5.1,Valid(Qb ,Ctx1,Db ) = ∅.□

5.2 Group-byQuery

Group-by queries are very important when dealing with data analysis. We adapt the group by query
qaд , presented in [10], to our purpose. It has the following format:

qaд(Y,a1, . . . ,am) ← aддr (ϕ(X),Y,a1 = f1(Z1), . . . , am = fm(Zm))

where aggr is a second order predicate, ϕ(X) is a conjunction of atoms over a schema, Y is the set of

grouping attributes, each Zi is a set of aggregate attributes, a1 . . . am are new variables not existing in

X and each fi is an aggregate function. Moreover, Y ⊆ X and for all 1 ≤ i ≤ m we have Zi ⊆ X and

Y ∩ Zi = ∅.

Example 5.5. In Table 1, queryQ1 groupsConnexion lines that coincide in their origin and destination
(group-by function on attributes Xto and Xf rom) and for each group computes the average (AVG) over

their attributes Xt ime and Xcf p . □

We can now formally present the semantics of a group-by query for a given context Ctx.

Definition 5.6 (Group-by query). The set of answers of qaд for context Ctx over D , denoted by

ans(qaд,Ctx,D), is the set of tuples t such that each t is the concatenation of a tuple u and m real

values a, i.e., t = u .a1.a2. . . . .am (form ≥ 0) defined as follows:

• u ∈ valAns(q1,Ctx,D) where q1 is the conjunctive query q1(Xi1 , . . . ,Xik ) ← ϕ(X1, . . . ,Xn).

• For each real value a, we have a = f unc(valAns(q2,Ctx, D)) where q2 is the conjunctive query

q2(X j1 , . . . ,X jkl
) ← hu (ϕ(X1, . . . ,Xn)) and hu is the homomorphism such that hu (Xi1 , . . . ,Xik ) = u.

The answer of q2 is a set of kl -tuples. Each a value is obtained by the application of a function f unc

on this set of tuples. □

5.3 Beta-Query

In [14] the relational algebra is extended by adding the beta operator. By focusing on data aggregation

along the traversal of the relations this new operator allows the definition of different measurements,

necessary in graph-based analysis. This paper proposes the β-query, which ensures validity w.r.t. a
10



context, and is a datalog version which extends the operator in [14]. The following example motivates

the use of β-queries.

Example 5.7. We are interested in computing minimal carbon footprint to travel from Alesia station
to any other reachable station in our transportation graph, restrained by Ctx1. This is a classical

problem in graph theory, having a more efficient solution when we avoid computing all paths to

later select the minimal ones. In other words, on the basis of Dijkstra’s algorithm, the idea is to

compute the minimal carbon footprint at each iteration and to abandon paths which are already

known as non minimal ones. Let us consider now query Qβ on Ctx1. A β-query needs some input

parameters. First, we define the query that is initially evaluated on our transportation graph as

qf ollows (Xf rom ,Xto ,Xcf p ) ← Transp(Xf rom ,Xto ,Xmeans Xt ime ,Xcf p ). Answers to this query are filtered

according to Ctx1, i.e., it is evaluated in its rewritten format, namely, qf ollows (Xf rom ,Xto ,Xcf p ) ←

Transp(Xf rom ,Xto ,Xmeans , Xt ime ,Xcf p ),Type(Xmeans , Rail), Xcf p <= 500. The result of qf ollows is thus the

railway version of our transportation graph where every edge respects the carbon limit of 500. Secondly,

we define the fact qset (Alesia,Alesia, 0, 0) which designates our start station (a 0-path connexion).

From this input information the β-query associated datalog program is defined. Results obtained

during the evaluation of this datalog program are those which will be used to compute the minimal

carbon footprint. Following Dijkstra’s algorithm the idea is to build, at each iteration of the program,

a set of nodes that have minimum (carbon footprint) distance from the source. At each step of the

computation, new edges are introduced in paths being constructed, either trying to reach further

stations or to optimize carbon footprint for already known stations. Only minimal paths between

Alesia and a station N are considered in the computation of the next step. □

Roughly speaking, a β-query represents iterative computations on a graph. Specific parts of the

computation are represented in the β-query as sub-operations set, map and reduce. These operations
allow users to control how the metrics are calculated as the graph is traversed. The first sub-operation

is set, which defines the facts with initial values set at the beginning of the computation. Map defines

a function that controls how the calculated values are spread to neighbors in the graph. Reduce
aggregates incoming values from the map phase into a new metric value for each node. Finally, a

fourth sub-operation consists in the revision of the set sub-operation. This new set defines how new

computed values will replace old values from the previous iteration of the β-query.

Now, more precisely, let us show how we build the datalog program associated to a β-query i.e., a
group-by query having the format

qβ (X, c) ← aддr (qsetRes (X, c ′, i),X, c = fβ (c
′))

where fβ is an aggregation function and queryqsetRes is defined by one of the two rules below, according
to the value of the boolean constant PartialRes. Intuitively, PartialRes indicates whether the final

result should be computed from all intermediary results or just from the result obtained in the last

iteration step.

qsetRes (X, c, i) ← qset (X, c, i),qmax (X, i), (PartialRes = f alse)

qsetRes (X, c, i) ← qset (X, c, i), (PartialRes = true)

Clearly, qsetRes is based on two other queries. The first one is the group-by query qmax which groups

the resulting values of qset on the set of attributes X and, for each group, computes the maximum

value of i .
11



qmax (X, i) ← aддr (qset (X, c, i ′),X, i =max(i ′))

Answers for query qset result from the evaluation of a recursive Datalog program. We start with

i = 0 and the evaluation of initial queries qset and qf ollows for context Ctx on the database instance.

Then, each step i of the program evaluation computes two different queries. The first one is qmap which,

by joining qset and qf ollows on specific attributes, allows progression on the data graph navigation.

This query has the following format:

qmap (X,Y, c, i) ← qset (X, c1, i0), qf ollows (Z,Y, c2), OK(i), c = fmap (c1, c2), i = i0 + 1

where Z is a subset of X, OK(i) ← i ≤ N ; and fmap is a function (usually an arithmetic function)

applied on counters c1, and c2 (e.g. multiplication, division, etc). The constant N imposes a limit on

the number of iterations. It might be replaced by other converging test mechanism.

Then, query qr educe groups intermediate results computed by qmap :

qr educe (Z, c, i) ← aддr (qmap (X,Y, c1, i),Z ∪ {i}, c = fr ed (c1))

where Z is a subset of X ∪ Y such that | Z |=| X | and fr ed is an aggregation function.

Finally, the join of qset values (those computed in a previous step i ′) with values computed by

qr educe (at the current step i) allows us to obtain the new values for qset (qset values at step i).

qset (X, c, i) ← qr educe (X, c, i),qset (X, c′, i ′), cond(c, c′)
qset (X, c, i) ← qr educe (X, c, i),¬qset (X, c′, i ′)

It is interesting to note that the answer set for the first qset query above is composed by tuples in

the intersection of qset and qr educe and respecting a given condition (cond) involving counters c and
c’, while for the second query, it is composed by tuples appearing exclusively in the latter computation

of qr educe .

We continue the discussion started in Example 5.7 and present the datalog program associated to

Qβ (Table 1).

Example 5.8. In the case of Example 5.7, PartialRes is true because the minimal carbon footprint

between Alesia and a station N can be obtained at any step (not necessarily at the last one).

Now, the map operation is expressed by the following rule.

qmap (Xf rom ,Xby , Xto ,Xcf p , i) ← qset (Xf rom ,Xby ,X
1

cf p , i
1), qf ollows (Xby ,Xto ,X

2

cf p ),

Xcf p = X 1

cf p + X
2

cf p , i = i1 + 1

Notice that i represents the number of links (edges on the graph) used to go from Xf rom = Alesia to

Xto . Moreover, the join between qset and qf ollows relations is done on the second attribute of qset and

the first of qf ollows . This ensures the construction of paths on the railway version of our transportation

graph. Here, the fmap computes the carbon footprint of a new path by adding the intermediary carbon

footprints. Notice also that Ok(i) is always True , since the computation continues until reaching a

fixpoint.

To illustrate the computation, in this example, we consider part of the transport graph, concerning

connexions from Alesia to Cite-Universitaire (Figure 2). To avoid overcharging our figures, we take

connexions in only one direction. In this context, Figure 3 shows three steps of our computation.

As already explained in Example 5.7, at step 0, query qset indicates the start station and qf ollows

returns all graph edges respecting constraints in Ctx1 (railway edges respecting c f p limit). The idea of

qmap is to increase paths’ lengths, going further, adding one more station to previous paths. Here, at

12



step 0 step 1

qset (Alesia,Alesia, 0, 0) qmap (Alesia,Alesia, P .Orleans, 160, 1)
qf ollows (Alesia, P .Orleans, 160) qmap (Alesia,Alesia,MoutonDuvernet , 106, 1)
qf ollows (Alesia,MoutonDuvernet , 106) qr educe (Alesia, P .Orleans, 160, 1)
qf ollows (MoutonDuvernet ,Denf ert , 133) qr educe (Alesia,MoutonDuvernet , 106, 1)
qf ollows (Denf ert ,CiteUniv, 500) qset (Alesia,Alesia, 0, 0)
qf ollows (P .Orleans,Montsouris, 159) qset (Alesia, P .Orleans, 160, 1)
qf ollows (Montsouris,CiteUniv, 106) qset (Alesia,MoutonDuvernet , 106, 1)

step 2 step 3

qmap (Alesia,Alesia, P .Orleans, 160, 1) qmap (Alesia,Alesia, P .Orleans, 160, 1)
qmap (Alesia,Alesia,MoutonDuvernet , 106, 1) qmap (Alesia,Alesia,MoutonDuvernet , 106, 1)
qmap (Alesia, P .Orleans,Montsouris, 319, 2) qmap (Alesia, P .Orleans,Montsouris, 319, 2)
qmap (Alesia,MoutonDuvernet ,Denf ert , 239, 2) qmap (Alesia,MoutonDuvernet ,Denf ert , 239, 2)
qr educe (Alesia, P .Orleans, 160, 1) qmap (Alesia,Montsouris,CiteUniv, 425, 3)
qr educe (Alesia,MoutonDuvernet , 106, 1) qmap (Alesia,Denf ert ,CiteUniv, 739, 3)
qr educe (Alesia,Montsouris, 319, 2) qr educe (Alesia, P .Orleans, 160, 1)
qr educe (Alesia,Denf ert , 239, 2) qr educe (Alesia,MoutonDuvernet , 106, 1)
qset (Alesia,Alesia, 0, 0) qr educe (Alesia,Montsouris, 319, 2)
qset (Alesia, P .Orleans, 160, 1) qr educe (Alesia,Denf ert , 239, 2)
qset (Alesia,MoutonDuvernet , 106, 1) qr educe (Alesia,CiteUniv, 425, 3)
qset (Alesia,Montsouris, 319, 2) qset (Alesia,Alesia, 0, 0)
qset (Alesia,Denf ert , 239, 2) qset (Alesia, P .Orleans, 160, 1)

qset (Alesia,MoutonDuvernet , 106, 1)
qset (Alesia,Montsouris, 319, 2)
qset (Alesia,Denf ert , 239, 2)
qset (Alesia,CiteUniv, 425, 3)

Fig. 3. Computation of minimal c f p - starting at Alesia

step 1 of Figure 3, qmap returns all paths which are 1-station away from Alesia, namely, P .Orleans

andMountonDuvernet .

Next, for qr educe , we have:

qr educe (Xf rom ,Xto ,Xcf p , i) ← aддr (qmap (Xf rom ,Xinter ,Xto , X
1

cf p , i), Xf rom ,Xto , i, Xcf p = MIN (X 1

cf p ))

where results are grouped on attributes Xf rom ,Xto , i and the aggregation function MIN is used on

carbon footprint values. Therefore, relation qr educe has the minimal carbon footprint for each path

(from Alesia to a reachable node by rail) on each iteration i .

In Figure 3, we notice that on step 1, qr educe returns similar results to those obtained by qmap since

there are no different ways to go from Alesia to P .Orleans orMountonDuvernet .

Finally, qset is redefined by the following two rules:

qset (Xf rom ,Xto ,Xcf p , i) ← qr educe (Xf rom ,Xto ,Xcf p , i), qset (Xf rom ,Xto ,X
1

cf p , i
1), Xcf p < X 1

cf p (∗)

qset (Xf rom ,Xto ,Xcf p , i) ← qr educe (Xf rom ,Xto ,Xcf p , i), ¬qset (Xf rom ,Xto ,X
1

cf p , i
1) (∗∗)

The first one updates the carbon footprint for two-node connexions already computed (in previous

steps). Updates are performed only when the new computed value corresponds to a path proposing

less energy consumption. The second rule deals with new nodes we can reach from Xf rom =Alesia.
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After updating qset the computation continues until the fixpoint. In the example of Figure 3, we

notice that after step 3 no other changes are possible. Notice that, in all steps illustrated in that

figure, only the second rule (∗∗) is used to update qset . Indeed, in the transport graph extract used

in our example, there are no paths from Alesia to another station N having different number of

intermediate stations (refer to qf ollows on step 0). Thus, at each step of the computation, only new

paths are added to qset . Notice however that there are two ways to go from Alesia to CiteUniv

passing by two intermediate stations: indeed, we have qmap (Alesia,Montsouris,CiteUniv, 425, 3) and

qmap (Alesia,Denf ert ,CiteUniv, 739, 3) on step 3 of Figure 3. But, on this same step, qr educe (Figure 3)

selects only the path with minimal c f p between these two stations.

All the above rules are part of the datalog program whose fixpoint gives connections from Alesia
to a node N reachable by rail and its associated carbon footprint. Each carbon footprint is a minimal

value found in a step i of the computation. However, as the final result, we have to find the minimal

ones, independently of the iteration number i . The following query computes this final result.

qsetRes (Xf rom ,Xto , Xcf p ) ← aддr (qset (Xf rom ,Xto ,X
1

cf p , i), Xf rom ,Xto , Xcf p = MIN (X 1

cf p ). □

Our querying system intends to be an important tool for platforms focusing on the analysis of

networks. Such a platform may then propose graphical user interfaces to help an end user to choose

or build his context and to execute pre-defined queries. For example, consider a pre-defined query

for computing minimal paths. In this case, Qβ (Table 1) can be used: the user just have to specify

starting node (Xf rom) or the end node (Xto ) and the parameter on which minimality is required (Xcf p

or Xt ime ).

A more flexible viewpoint is reserved to expert users, capable of customizing a β-query. In such case

we can propose the automatic generation of the datalog program associated to a β-query on the basis

of some input parameters.

In the next section we present a use case to illustrate graph analysis, via a β-query, on the urban

context.

6 GRAPH ANALYSIS IN CITIES: AN USE CASE

This section presents a simplified use case where Paris-city government aims to analyse the best place

to install a new crèche. Simplifications (w.r.t. the number of available predicates and constraints) allow

us to focus on how the β-query is used. Therefore, we consider the constraints presented in Table 3.

Context Ctx2 establishes that we are only interested in railways (c1), that we consider places (Xf rom)

near a garden (c3) and a station (c4), which should not be near an existing crèche (c5).

Context 2: Set of constraints C2 of context Ctx2
c1 Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xkm ,Xcf p ) → Type(Xmeans ,Rail).

c3 Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xkm ,Xcf p ) → Environment(Xf rom ,Garden).

c4 Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xkm ,Xcf p ) → Environment(Xf rom , Station).

c5 Environment(Xf rom , Station), Environment(Xf rom ,Creche) → ⊥.

Table 3. Context Ctx2 = (C2,G) on a transportation database.
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NeiдhbourCount(Xf rom , c) ← aдд(Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xkm ,Xcf p ),Xf rom , c = COUNT (Xto )))

qf ollows (Xf rom ,Xto , c) ← Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xkm ,Xcf p ),NeiдhbourCount(Xf rom , c).

qset (Xf rom , r , i) ← Transp(Xf rom ,Xto ,Xmeans ,Xt ime ,Xkm ,Xcf p ), r = 100, i = 0.

qmap (Xf rom ,Xto , r , i) ← qset (Xf rom , r0, i),qf ollows (Xf rom ,Xto , c), r = r0/c, i = i0 + 1, i < 10.

qr educe (Xto , r , i) ← aдд(qmap (Xf rom ,Xto , r0, i), Xto , i, r = SUM(r0)).

qset (Xf rom , r , i) ← qr educe (Xf rom , r , i).

qmax (Xf rom , i) ← aддr (qset (Xf rom , r , i
′),Xf rom , i = MAX (i ′))

qSetRes (Xf rom , r ) ← qset (Xf rom , r , i),qmax (Xf rom , i)

Table 4. Datalog program associated to the β-query computing the rank of transportation graph nodes.

1 2 3 4 5 6 7 8 9 10 19 20 29 30 39 40 49 50

Alesia 100 75 125 75 125 75 125 75 125 75 125 75 125 75 125 75 125 75

CiteUniversitaire 100 100 88 113 81 119 78 122 77 123 75 125 75 125 75 125 75 125

DenfertRochereau 100 100 100 88 113 81 119 78 122 77 125 75 125 75 125 75 125 75

JeanMoulin 100 25 75 31 69 34 66 36 64 37 62 37 63 37 63 37 63 37

MairieMontRouge 100 25 75 31 69 34 66 36 64 37 62 37 63 37 63 37 63 37

MontSouris 100 75 125 75 125 75 125 75 125 75 125 75 125 75 125 75 125 75

MoutonDuvernet 100 100 88 113 81 119 78 122 77 123 75 125 75 125 75 125 75 125

PortedOrleans 100 300 125 275 138 263 144 256 147 253 150 250 150 250 150 250 150 250

Table 5. Rank computation: the table shows for each station respecting Ctx2 its rank on step i .

To find the best place for a crèche one should also take into account transport possibilities. The goal

here is to choose a place easily reachable via the available transport network. We use the following

β-query:

Qβ1 (Xf rom ,Xrank ) ← qSetRes (Xf rom ,Xrank )

to compute the rank (Xrank ) of a place (Xf rom) w.r.t. Ctx2. Indeed, the above query is associated to

the datalog program presented in Table 4 which implements a PageRank-like algorithm. We recall

that PageRank is a link analysis algorithm which assigns a numerical weighting to nodes in a graph,

with the purpose of "measuring" its relative importance within the graph. That is, in our example, the

algorithm can measure the attractiveness of a station w.r.t. possible connexions with other stations on

the transportation graph. However, this attractiveness is bounded by restrictions imposed in Ctx2. In
fact, the new crèche should be placed not very far from a railway station (c1 and c4) and a garden (c3),

the latter allowing occasional walks with children. Moreover, constraint c4 ensures the non existence

of a crèche as a facility in the selected station environment - a way to avoid placing the new crèche in

a environment already having another crèche.

To run our use case as a small example, we have assumed only the graph of Figure 2 where we

arbitrarily placed existing crèches and gardens.

Table 5 shows the rank computation, w.r.t. Ctx2, for each station depicted in Figure 2. Although

in this example the rank presents a 1-step oscillation (e.g. Alesia has rank 75 on step 6, rank 125 on

step 7 and comes back to rank 75 on step 8), we can draw some conclusions concerning the best place

for a new crèche. Notice that convergence is reached when we consider just even (or odd) steps. For

instance, the rank of Alesia stabilizes on 125 when only odd steps are considered. When we increase

the number of connexions, stability can be reached. Anyway, from the computed values, it is possible

to conclude that Porte d’Orléans is the most attractive station near which a new crèche should be

placed in accordance to Ctx2.
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The above results have been obtained by our in-memory prototype, being implemented in Java.

7 RELATEDWORK

Different graph databases and languages are currently available [5, 19, 27]. Although the options being

offered have advantages in terms of data storage and management, they lack query capabilities to

capture network properties typical of graph analysis and means to define the user’s context through

constraints.

Graph query languages are often based on conjunctive regular path queries (CRPQs). CRPQs are the

basis for several graph languages, such as GraphLog [11] and SPARQL
2
. Recent developments have

extended CRPQs in order to allow constraints over path properties. These types of queries have been

described as extended conjunctive regular path queries (ECRPQs) [6]. ECRPQs also allow paths to be

returned as query results. These queries are all focused on data selection and support only simple

cases of analysis.

Lately there has been renewed interest in expressive query languages to tackle modern analysis

problems. To overcome the limits of traditional query languages, Datalog has been proposed as the

basis of the new languages [13], and extensions to support aggregates in recursive logic rules have been

presented as in [17]. Prominent projects in this area exist. SociaLite [22] offers integration between

Datalog and procedural languages, allowing embedded Datalog formulas inside loops and conditionals.

EmptyHeaded [2] is a relational engine for graph processing that offers a Datalog-like language with

native support for fixpoint queries. BigDatalog [23] extends Spark with recursion. Datalography [18]

proposes an evaluation engine for executing graph analysis over BSP-style graph processing engine.

These projects focus on optimization of the parallel execution of queries through the use of data

structures that yield better execution plans of multi-way joins.

The work presented in this paper, in contrast, revisits query expressiveness and usability, offering

higher-level constructs for users to specify the query context (constraints) and parameters of the graph

analysis (β-queries). Although we do not focus on query optimization, the mentioned approaches are

compatible with our querying strategies and are currently being considered in our implementations.

Constraints are taken into account in the context of RDF technologies such as ShEx [25], SPIN [15],

and SHACL [16]. However, their focus is on schema and ours is on integrity constraints. Stardog [26]

deals with constraints which are closer to ours. The mentioned works, however, do not emphasize

query expressiveness in the context of graph analysis.

8 CONCLUDING REMARKS

Smart cities face several challenges that require processing of a large volume of data provided by

different sources, available for different goals. In such environment, the ability of performing context-

driven analysis on graphs is essential to the decision process. This paper contributes in this direction,

proposing: (i) a declarative query language offering tools for graph analysis in a context-driven

environment which allows reasoning with confidence over multistore systems [7] and (ii) a querying

system which filters answers obtained from a database (distributed or not) according to a given context.

It adopts the philosophy that data quality is “everyone’s business" [24] placing quality requirements at

2
http://www.w3.org/TR/sparql11-query
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user’s hand. Data in sources may be inconsistent w.r.t. context restrictions, but only consistent subsets

are returned to the user.

Indeed, our contribution is the result of the integration of constraint checking (which enables context-

aware queries) and query expressiveness for graph analysis (which enables recursive computations

over networks). To the best of our knowledge, this is the first querying environment covering these two

capabilities. To better exploit our system’s possibilities, we are currently working on its construction

on the top of a think-like-a-vertex parallel graph processing platform: the one proposed in [21] and

Giraph (similar to what is done in [18]).
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