00001 /**** , [ MatrixGame.cpp ], 00002 Copyright (c) 2007 Universite d'Orleans - Arnaud Lallouet 00003 00004 Permission is hereby granted, free of charge, to any person obtaining a copy 00005 of this software and associated documentation files (the "Software"), to deal 00006 in the Software without restriction, including without limitation the rights 00007 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 00008 copies of the Software, and to permit persons to whom the Software is 00009 furnished to do so, subject to the following conditions: 00010 00011 The above copyright notice and this permission notice shall be included in 00012 all copies or substantial portions of the Software. 00013 00014 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 00015 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 00016 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 00017 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 00018 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 00019 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 00020 THE SOFTWARE. 00021 *************************************************************************/ 00022 00023 #include <cstdlib> /* pour srand, rand et RAND_MAX */ 00024 #include <ctime> /* pour time */ 00025 #include <math.h> /* pour pow */ 00026 00027 #include <iostream> 00028 00029 #include "gecode/minimodel.hh" 00030 #include "gecode/int/element.hh" 00031 00032 #include "qsolver.hh" 00033 #include "implicative.hh" 00034 #include "SDFVariableHeuristic.hh" 00035 #include "NaiveValueHeuristics.hh" 00036 00037 #define UNIVERSAL true 00038 #define EXISTENTIAL false 00039 00040 // The Matrix game consists in a square boolean matrix of size 2^depth. First player cuts it vertically in two parts and removes one half, 00041 // while secodn player do the same, but cutting the matrix horizontally. The game ends when there are only one cell left in the matrix. 00042 // If this last cell has value 1, the first player wins. If it has value 0, the second player wins. 00043 00044 // The present model of this game is pure QBF, that QeCode can handle (though not as fast as QBF solvers...) 00045 00046 using namespace MiniModel; 00047 00048 int main (int argc, char * const argv[]) { 00049 00050 int depth = 6; // Size of the matrix is 2^depth. Larger values may take long to solve... 00051 int nbDecisionVar = 2*depth; 00052 int nbScope = nbDecisionVar+1; 00053 int boardSize = (int)pow((double)2,(double)depth); 00054 00055 std::srand(std::time(NULL)); 00056 00057 IntArgs board(boardSize*boardSize); 00058 for (int i=0; i<boardSize; i++) 00059 for (int j=0; j<boardSize; j++) 00060 board[j*boardSize+i] = (int)( (double)rand() / ((double)RAND_MAX + 1) * 50 ) < 25 ? 0:1; 00061 00062 IntArgs access(nbDecisionVar); 00063 access[nbDecisionVar-1]=1; 00064 access[nbDecisionVar-2]=boardSize; 00065 for (int i=nbDecisionVar-3; i>=0; i--) 00066 access[i]=access[i+2]*2; 00067 00068 // debug 00069 for (int i=0; i<boardSize; i++) 00070 { 00071 for (int j=0; j<boardSize; j++) 00072 cout << board[j*boardSize+i] << " "; 00073 cout << endl; 00074 } 00075 cout << endl; 00076 for (int i=0; i<nbDecisionVar; i++) 00077 cout << access[i] << " "; 00078 cout << endl; 00079 // end debug 00080 00081 int *scopesSize = new int[nbScope]; 00082 for (int i=0; i<nbScope-1; i++) 00083 scopesSize[i]=1; 00084 scopesSize[nbScope-1]=2; 00085 00086 Implicative p(nbScope, QECODE_EXISTENTIAL, scopesSize); 00087 00088 // Defining the variable of the n first scopes ... 00089 for (int i=0; i<nbDecisionVar; i++) 00090 { 00091 p.QIntVar(i, 0, 1); 00092 p.nextScope(); 00093 } 00094 00095 // Declaring last scope variables ... 00096 00097 p.QIntVar(nbDecisionVar, 0, 1); 00098 p.QIntVar(nbDecisionVar+1, 0, boardSize*boardSize); 00099 p.nextScope(); 00100 // Body 00101 00102 post(p.space(), p.var(nbDecisionVar) == 1); 00103 00104 IntVarArgs X(nbDecisionVar); 00105 for (int i=0; i<nbDecisionVar; i++) 00106 X[i]=p.var(i); 00107 00108 linear(p.space(), access, X, IRT_EQ, p.var(nbDecisionVar+1)); 00109 // MiniModel::LinRel R(E, IRT_EQ, MiniModel::LinExpr(p.var(nbDecisionVar+1))); 00110 element(p.space(), board, p.var(nbDecisionVar+1), p.var(nbDecisionVar)); 00111 00112 // When every variables and constraints have been declared, the makeStructure method 00113 // must be called in order to lead the problem ready for solving. 00114 p.makeStructure(); 00115 00116 /* 00117 cout << (p.quantification(0)==UNIVERSAL? "universal" : "existential") << "-0\n"; 00118 cout << " " << (p.quantification(1)==UNIVERSAL? "universal" : "existential") << "-1\n"; 00119 cout << " " << (p.quantification(2)==UNIVERSAL? "universal" : "existential") << "-2\n"; 00120 cout << " " << (p.quantification(3)==UNIVERSAL? "universal" : "existential") << "-3\n"; 00121 cout << " " << (p.quantification(4)==UNIVERSAL? "universal" : "existential") << "-4\n"; 00122 00123 */ 00124 00125 // We will use a Smallest Domain First branching heuristic for solving this problem. 00126 SmallestDomainFirst heur; 00127 SmallestValueFirst v_heur; 00128 00129 // So, we build a quantified solver for our problem p, using the heuristic we just created. 00130 QSolver solver(&p,&heur, &v_heur); 00131 00132 unsigned long int nodes=0; 00133 unsigned long int steps=0; 00134 00135 // then we solve the problem. Nodes and Steps will contain the number of nodes encountered and 00136 // of propagation steps achieved during the solving. 00137 bool outcome = solver.solve(nodes,steps); 00138 00139 cout << " outcome: " << ( outcome? "TRUE" : "FALSE") << endl; 00140 cout << " nodes visited: " << nodes << " " << steps << endl; 00141 00142 return outcome? 10:20; 00143 00144 }