Université d'Orléans - Observatoire des Sciences de l'Univers en région Centre - Val de Loire

MASTER « Risques et Environnement » Parcours CPRE & VSED

Université d'Orléans-OSUC
Campus Géosciences
1A rue de la Férollerie
45071 Orléans Cedex 2

Responsables du master : Christophe GUIMBAUD Guillaume DAYMA

Pour tout renseignement :
Scolarité
02 38 49 49 12
admission-osuc@univ-orleans.fr

LIVRET DE L'ETUDIANT

ANNEE 2022-2023

Présentation

L'homme est en interaction permanente avec sa planète → la Terre, dont les disponibilités en ressources et la qualité du milieu environnemental sont de plus en plus dégradées. A ce jour et à l'avenir, de nombreux métiers se développent, que ce soit en milieu industriel ou de recherche, public ou privé, faisant appel à des compétences dans deux domaines très interdépendants : l'Energie et l'Environnement.

Les parcours CPRE et VSED s'articulent sur 3 semestres d'enseignements. Une partie des enseignements est commune au sein du master Risques et Environnement. Certains enseignements, plus particulièrement pour le parcours CPRE sont communs avec le parcours *Géochimie et Géomatique de l'Environnement* (Geo2Env) du Master *Sciences de la Terre et des Planètes – Environnement* (STPE) de l'OSUC et du master *Maîtrise des Risques Industriels* (MRI) de l'*Institut National des Sciences Appliquées Centre Val de Loire* (INSA CVL) de Bourges.

Le parcours CPRE forme des spécialistes dans les domaines de l'énergie et de l'environnement. Les diplômés possèdent une approche globale des risques environnementaux avec des connaissances approfondies dans les domaines suivants : combustion et énergies fossiles et propres ; maîtrise des risques (industriels, chimiques, nucléaires, déchets), pollutions et dépollutions (air, eaux, sols).

Le parcours VSED forme des cadres scientifiques dans le domaine de l'efficacité énergétique dans le secteur du transport, de la production et de la valorisation de l'énergie. Les diplômés possèdent une approche globale des flux énergétiques avec des connaissances approfondies dans les domaines suivants : thermique, thermodynamique, mécanique des fluides réactifs ou non et automatique/contrôle.

Objectifs du Master « Risques & Environnement »

Le master « Risques et Environnement » a pour objectif de permettre aux jeunes diplômés de maîtriser les fondamentaux des sciences appliquées à l'environnement, à l'énergie et à la gestion de risques industriels. Pour cela, la formation se décompose en 2 parcours :

- Chimie, Pollution, Risques, Environnement (CPRE)
- Véhicule et Systèmes énergétiques Durables (VSED)

qui abordent ces thématiques respectivement par le biais de la chimie et de l'ingénierie des systèmes. Ils auront acquis les outils nécessaires pour aborder les problématiques liées à la pollution (origine, diagnostic, analyse, remédiation) sur l'ensemble des compartiments de l'environnement (atmosphère, eaux et sols), en s'appuyant sur les plateformes analytiques de l'OSUC, de l'UFR Sciences, et plus globalement du Grand campus Orléanais (Université d'Orléans-CNRS-BRGM-INRAE).

Pédagogie

Visant un développement progressif de l'autonomie des étudiants, outre les enseignements théoriques comprenant des cours-TD et travaux pratiques de base, la pédagogie s'appuie notamment sur des approches projets, sollicitant fortement les sites instrumentés s'appuyant sur les plateformes analytiques comme par exemple :

- ➤ La plateforme du projet CPER PIVOTS : PRAT pour la pollution de l'air, PESA pour les émissions de polluants gazeux par les sols (naturels : tourbières, anthropisés : cultivés et pollués), PRIME pour la remédiation des sols, sous-sols et sédiments contaminés et DECAP pour le développement de nouveaux capteurs) [parcours CPRE principalement] https://www.plateformes-pivots.eu/
- ➤ La plateforme du LABEX CAPRYSSES (pôle chimie haute température Energie), pour acquérir les outils nécessaires pour aborder les problématiques liés à l'énergie (chimie haute température, optimisation des processus énergétiques et conception moteurs) [parcours VSED principalement] http://caprysses.fr/

Les diplômés seront ainsi à même de juger de la pertinence de leurs résultats (expérimentaux, numériques et théoriques) et de l'influence des conditions opératoires. Ils disposeront des capacités techniques, scientifiques et de dialogue nécessaires pour échanger avec les différents acteurs du monde industriel et de la recherche.

Structure modulaire du master R&E

On trouve des modules communs au sein des 2 parcours (CPRE et VSED) de la mention R&E à chaque semestre, en physico-chimie des systèmes énergétiques et de l'atmosphère car il existe un axe commun de continuité forte entre ces parcours : formation des polluants liée aux transports - optimisation de la transition énergétique - pollution/qualité de l'air et transport). On retrouve ces modules communs à CPRE et VSED

Des modules sont en commun avec le « parcours Géochimie & Géomatique de l'Environnement » (Geo2Env) du master Sciences de la Terre, des Planètes - Environnement (STPE) de l'OSUC, car il existe un axe commun de continuité forte entre ces parcours : Formation et diagnostic des pollutions - traitement (remédiation) de la pollution - gestion de l'environnement.

Des modules sont aussi en commun avec le parcours « Risques & Accidents Industriels » (RAI) et/ou le parcours « Risques Environnementaux » (RE) du master « Maîtrise des Risques Industriels (MRI) de l'INSA CVL de Bourges. De plus, un module porté par l'INSA-CVL de Bourges (explosion de gaz) est suivi par CPRE dans le domaine des risques industriels.

Pour vous aider à vous repérer selon votre parcours, une pastille de couleur indique les modules que vous suivrez durant votre cursus

LÉGENDES	5
Géoressources, Géomatériaux et Géodynamique	
Géo²Env Géochimie et Géomatique de l'Environnement	
CPRE Chimie, Pollutions, Risques, Environnement	
VSED Véhicules et Systèmes Énergétiques Durables	

Masters partenaires (avec enseignements communs)

PARCOURS	MENTION
Chimie, Pollution, Risques & Environnement (CPRE)	Risques & Environnement (RE)
Véhicules et Systèmes Energétiques Durables (VSED)	OSUC - Université d'Orléans
Géochimie & Géomatique de l'Environnement (Geo ² Env)	Sciences de la Terre, des Planètes et de l'Environnement (STPE) OSUC - Université d'Orléans
Géoressources, Géomatériaux & Géodynamique (G³)	Sciences de la Terre, des Planètes et de l'Environnement (STPE) OSUC - Université d'Orléans
Risques et Accidents Industriels (RAI)	Maîtrise des Risques Industriels (MRI) INSA - CVL Bourges
Risques Environnementaux (RE)	Maîtrise des Risques Industriels (MRI) INSA - CVL Bourges
Master Environmental Engineering	Shandong University, SDU (Qingdao, China) & Fudan University, FDU (Shanghai, China)
Sciences Spatiales Appliquées (SSA)	Physique Fondamentale et Applications

Compétences ou capacités évaluées communes aux 2 parcours

- → Aptitude à mobiliser les ressources d'un large champ de sciences fondamentales.
- → Connaissance et compréhension d'un champ scientifique et technique de spécialité.
- → Identification et résolution de problèmes, même non familiers et non complètement définis, collecte et interprétation de données, utilisation des outils informatiques, analyse et conception de systèmes complexes, expérimentation.
- → Capacité à s'intégrer dans une organisation, à l'animer et à la faire évoluer : engagement et leadership, management de projets, maîtrise d'ouvrage, communication avec des spécialistes comme avec des non-spécialistes.
- → Prise en compte des enjeux industriels, économiques et professionnels : compétitivité et productivité, innovation, propriété intellectuelle et industrielle, respect des procédures qualité, sécurité.
- → Aptitude à travailler en contexte international : maîtrise de l'anglais, sûreté, intelligence économique, ouverture culturelle, expérience internationale.
- → Respect des valeurs sociétales : connaissance des relations sociales, de l'environnement et du développement durable, éthique.

Métiers/ débouchés/Insertion professionnelle communs aux 2 parcours

Les diplômés seront amenés à occuper des postes en lien avec l'innovation, la recherche et le développement dans des secteurs d'activités liés à l'énergie (utilisation, maîtrise, production...), à l'environnement (dépollution, traitement, prévention des pollutions, analyse des risques...), ou aux transports (automobile, aéronautique, nouveaux carburants).

Le master RE conduit, soit directement à un emploi de niveau cadre ou cadre supérieur, soit à une poursuite en doctorat pour accéder aux métiers de la recherche fondamentale ou appliquée, dans le privé ou dans le public (Cf détails par parcours). Une place importante est accordée à la professionnalisation, au travers de modules spécifiques pilotés par des experts dans les domaines, de l'énergie, de l'environnement ou des transports, de modules projets sur sites instrumentés (laboratoires pilotes, sites d'observation), des stages de longue durée en milieu professionnel (4 à 5 mois en M1, 5 à 6 mois en M2) en France ou à l'international.

Adossement Recherche commun aux 2 parcours et partenaires

Le master « Risques et Environnement » repose sur une interaction forte avec la recherche menée par :

- ➤ Les laboratoires Du Grand Campus Orléanais (CNRS & Université d'Orléans : ICARE, LPC2E, ISTO, PRISME, BRGM, INRA-UR sols) dont les thématiques de recherche sont reconnus d'excellence, avec le pôle de compétitivité régional Eco-technologies DREAM Eaux et milieux
- ➤ Les Labex VOLTAIRE (étude des géo fluides volatils, de la Terre profonde à la haute atmosphère) et CAPRYSSES (pôle chimie haute température –Energie)
- ➤ Le récent projet PIVOTS (Région Centre Val de Loire : ARD2020, CPER, FEDER) par l'Université d'Orléans.

La proximité du Pôle de compétitivité DREAM Eaux & Milieux, de l'Agence de l'Eau Loire-Bretagne, de la DREAL, et des entreprises associées (BRGM et filiales; ANTEA Group, Iddea) assure des passerelles efficaces avec le tissu socio-économique. La forte implication des partenaires industriels du campus orléanais se traduit non seulement par la participation active des personnels de plusieurs partenaires privés aux enseignements, mais aussi à l'encadrement de stages ou projets d'étudiants qui seront, pour partie, accueillis dans leurs locaux ou sur leurs sites.

Le parcours CPRE principalement adossé à :

- > ICARE-CNRS (Institut de Combustion, Aérothermique, Réactivité et Environnement UPR 3021)
- ➤ LPC2E-CNRS (Laboratoire de Physique et de Chimie de l'Environnement et de l'Espace UMR 7328),
- ➤ En interaction avec l'ISTO-CNRS (Institut des Sciences de la Terre d'Orléans UMR 7327) et le BRGM (Bureau de Recherches Géologiques et Minières) et ses filiales, et de l'INSA CVL (Institut National des Sciences Appliquées Centre Val de Loire) de Bourges.

Le parcours **VSED** principalement adossé à :

- PRISME (Institut Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique, Energétique -UPRES 4229)
- > ICARE CNRS (Institut de Combustion, Aérothermique, Réactivité et Environnement UPR 3021).

https://www.univ-orleans.fr/osuc/cpre#Recherche

http://www.univ-orleans.fr/investissements-avenir/caprysses

http://www.univ-orleans.fr/investissements-avenir/voltaire

http://icare.cnrs.fr/

http://www.brgm.fr/

http://www.lpc2e.cnrs-orleans.fr/

https://www.isto-orleans.fr/

http://www.univ-orleans.fr/prisme

http://www.poledream.org/

https://www6.val-de-loire.inra.fr/ur-sols

Organisation de l'Equipe de formation du Master R&E

Equipe de gouvernance et de pilotage du master R&E

Responsables de la mention RE :

Christophe GUIMBAUD (Environnement) christophe.guimbaud@cnrs-orleans.fr

2 02 38 25 76 45

Guillaume DAYMA (Energie)
guillaume.dayma@cnrs-orleans.fr

2 02 38 25 54 99

Responsables Master 1:

Christophe GUIMBAUD (CPRE) christophe.guimbaud@cnrs-orleans.fr

2 02 38 25 76 45

Christian CAILLOL (VSED) christian.caillol@univ-orleans.fr

Responsables Master 2 :

Guillaume DAYMA (CPRE)
guillaume.dayma@cnrs-orleans.fr

2 02 38 25 54 99

Christian CAILLOL (VSED) christian.caillol@univ-orleans.fr

Echanges internationaux :

Christophe GUIMBAUD

christophe.guimbaud@cnrs-orleans.fr

2 02 38 25 76 45

Progression pédagogique, stages M+M2, suivi et devenir des étudiants, insertion recherche et Pro:

Stéphanie DE PERSIS (CPRE M1) Valéry CATOIRE (CPRE M2)
Gisèle TONG (CPRE M1) Zeynep SERINYEL (CPRE M2)
Christelle BRIOIS (CPRE M1) Christian CAILLOL (VSED M1+M2)

Cette équipe de pilotage est fortement appuyée par une équipe pédagogique constituée d'enseignants chercheurs de fortes compétences très variées,

Equipe pédagogique du master R&E

NOM	PRENOM	NOM	PRENOM
ABID	Saïd	HIGELIN	Pascal
AGRAPART	Clémence	HURET	Nathalie
ALLEGRIS	Christophe	ISCH	Arnaud
BRIOIS	Christelle	JAVOY	Sandra
BRUAND	Ary	JOURDAIN	Line
CAGNON	Benoit	KOURTA	Azeddine
CAILLOL	Christian	LACOSTE	Marine
CATOIRE	Valéry	LAURENT	Faustine
CELESTIN	Sébastien	LOPEZ	Emilie
CHATELAIN	Jean-Baptiste	MERCIER	Patrick
COLIN	Guillaume	MERCURY	Lionel
COLOMBANO	Stéfan	MOQUET	Jean-Sébastien
COMANDINI	Andréa	NAUDET	Valérie
COSTE	Michel	POISSON	Nathalie
COUSIN	Isabelle	RICHER DE FORGES	Anne
DAËLE	Véronique	SABATIER	Stéphane
DANIELLOU	Richard	SERINYEL	Zeynep
DAVAIN-CATTEAU	Gabrielle	SIMONNEAU	Anaëlle
DAYMA	Guillaume	SOCHET	Isabelle
DE PERSIS	Stéphanie	SUIRE	Patrick
FALALA	Bruno	TONG	Gisèle
FEDIOUN	Ivan	VASSE	Laurent
GUIMBAUD	Christophe	VAUTRIN-UL	Christine
HALTER	Fabien	VILLENEUVE	Jacques
HELMER	Cédric	ZORNIG	Clément
HESPEL	Camille		

En complément de l'équipe pédagogique, les services administratifs de l'OSUC sont à votre disposition pour vous accompagner :

Admissions – Inscriptions administratives – Gestion de la pédagogie et des formations :

Martine BODUSSEAU – Responsable du service Scolarité – Bureau E113 martine.bodusseau@univ-orleans.fr

2 02 38 49 49 12

Emplois du temps, inscriptions pédagogiques, gestion des groupes :

Marlène LALLEMAND – Gestionnaire pédagogique – Bureau E113 ade-osuc@univ-orleans.fr

2 02 38 49 49 50

Conventions de stages, relations internationales, insertion professionnelle et liens avec l'entreprise : Fabienne GENTILLET – Responsable des services administratifs - RDC

osuc-stages@univ-orleans.fr

2 02 38 49 49 41

Calendrier des admissions en Master (candidatures) :

La campagne de candidature s'étend du 1er mai au 05 juin 2022. Les résultats sont publiés fin juin.

Pour le parcours CPRE

Deux procédures selon l'origine des étudiants :

- Pour les étudiants extra-communautaires dont le pays est doté d'un espace Campus France : suivre les instructions et le calendrier indiqués directement sur la plateforme.
- Pour les étudiants français ou les étudiants extra-communautaires dont le pays n'est pas doté d'un espace Campus France ou les étudiants étrangers déjà présents sur le territoire français :

Les dossiers de candidature sont à compléter via le web sur la plateforme « e-candidat »

→ Entre le 1^{er} mai et jusqu'au 5 juin 2022 : https://ecandidat.univ-orleans.fr/

Aucun dossier ne sera accepté au-delà des dates prévues.

Pour tout complément d'information, vous pouvez contacter la scolarité : admission-osuc@univ-orleans.fr

Les Inscriptions administratives se font UNIQUEMENT EN JUILLET

Pour le parcours VSED

Les étudiants de ce parcours sont sélectionnés parmi les étudiants déjà inscrits dans le cursus d'ingénieurs de Polytech'. Il n'y a pas de recrutement direct dans ce parcours.

PARCOURS CPRE (Chimie, Pollution, Risques, Environnement)

OBJECTIFS

Former des cadres dotés de compétences dans deux domaines très interdépendants : l'Energie et l'Environnement. Des connaissances approfondies dans ces domaines leur permettront d'analyser et de résoudre les problèmes liés à la production et la consommation d'énergie (fossiles, nucléaires, renouvelables), aux pollutions de tous types, aux rejets industriels ainsi qu'aux risques inhérents à ces différentes formes d'énergie. Ils seront qualifiés pour appliquer des méthodes de prévention (ou de réduction) des pollutions et de dépollution, pour participer au développement de nouvelles sources d'énergie et de procédés propres.

CONDITIONS D'ACCÈS

L'accès à la première année du Master est ouvert, dans la limite de la capacité d'accueil, aux titulaires d'une Licence mention Chimie, Physique-Chimie, Physique, Sciences et technologie, Sciences pour l'ingénieur et Sciences de terre (sous validation d'acquis en chimie et en Physico-chimie) ou diplôme jugé équivalent par une commission pédagogique.

Ce master est accessible dans le cadre de la formation continue avec éventuellement des validations d'acquis professionnels (contacter le SEFCO). Le calendrier et les dossiers de candidature sont accessibles sur le site internet de l'OSUC à la rubrique « Candidatures - Admissions » à partir du 1^{er} mars.

COMPÉTENCES

Les étudiants acquièrent des compétences dans les domaines suivants :

- Aptitude à analyser les pollutions dans les différents milieux naturels (atmosphère, eaux, sols) et en milieu industriel, et aptitude à proposer des solutions (prévention, réduction, dépollutions).
- > Aptitude à analyser et résoudre les problèmes liés à la production/consommation d'énergie et aux risques associés.
- Capacité à mettre en œuvre des techniques analytiques nécessaires à ces missions.
- ➤ Capacité à modéliser les processus physico-chimiques de la combustion, de l'atmosphère, des eaux et des sols.
- > Aptitude à mettre en place et ou à faire évoluer les systèmes de management environnemental des entreprises

LES TERRAINS https://www.plateformes-pivots.eu/ / https://www.univ-orleans.fr/osuc/cpre#Terrains

Les modules terrain proposés sont associées aux Plateformes d'analyse environnemental en Région Centre ou dans le cadre d'échange à l'international avec la Chine (Cf rubrique : le CPRE à l'international)

LES METIERS https://www.univ-orleans.fr/osuc/cpre#Metiers

CPRE ouvre à des Métiers dans le domaine des risques environnementaux, par l'acquisition de connaissances approfondies dans les domaines suivants :

- ✓ Optimisation/valorisation énergétique : combustion, énergies fossiles et carburants alternatifs
- ✓ Maîtrise des risques (industriels, chimiques, nucléaires, déchets)
- ✓ Pollutions et dépollutions (air, eaux, sols) : Origine-processus de formation, diagnostic-analyse, gestion remédiante (traitement)

Les secteurs d'activités professionnels peuvent être très variés :

- ✓ Analyse et contrôle des pollutions, Réseaux de surveillance, Gestion des préventions et de la protection contre les pollutions, Traitement des polluants, Incinération et gestion de déchets, Expertises et conseils, Assurances, Sécurité industrielle et Risques technologiques, Management environnemental, au sein d'entreprises, de laboratoires, bureaux d'études, bureaux d'ingénieurs-conseils, cabinets d'expertise, collectivités territoriales et administrations.
- ✓ Recherche et Développement (R&D) dans les domaines : de l'aéronautique et du spatial, de l'automobile, de l'industrie pétrolière et gazière, des nouveaux carburants, des explosifs, de l'armement, du nucléaire, des traitements de déchets, des réseaux de mesure et de contrôle de l'atmosphère, des traitements des eaux usées et production d'eau potable, des dépollutions des sols, au sein des grands organismes de recherches publiques et industrielles

Types d'emplois accessibles :

- → Chargé d'Audits,
- → Chargé de Missions en environnement (en bureaux d'études),
- Chargé de communication,
- → Expert-conseil ou consultant en environnement,
- → Responsable ou Ingénieur hygiène, sécurité, environnement,
- → Ingénieur dans des laboratoires d'analyse de mesures de polluants et dans des réseaux de mesure de la qualité de l'air,
- → Ingénieur Conception et Recyclage (secteur automobile),
- → Ingénieur R&D chargé de la mesure d'effluents gazeux d'industries,
- → Chef de projet de dépollution de sites pollués.
- → Animateur Sécurité-Environnement en entreprise ou collectivités territoriales

Le domaine académique est pourvoyeur d'emplois de type :

- → Poursuite en thèse, dans les organismes et établissements de formation et de recherche
- → Maître de Conférences dans les Universités,
- → Chargé de Recherche ou Ingénieur de Recherche au CNRS,
- → Ingénieur de Recherche au BRGM, à l'INRA, à l'IRD, l'IRSN, INERIS...).

Le domaine non-académique est pourvoyeur d'emplois de type :

→ Chargé d'études scientifiques, chargé de mission, ingénieur et cadre technique en recherche et développement, cadre technique de l'environnement dans les bureaux d'études, les grands groupes privés et publics, les services de l'Etat, les collectivités, les chambres consulaires, les établissements publics (Agences de l'Eau par exemple) du secteur de l'environnement (diagnostic, gestion et suivi de la qualité environnementale des milieux naturels, sites et sols pollués) et de l'énergie.

La forte implication des partenaires industriels du campus orléanais se traduit non seulement par la participation active des personnels de plusieurs partenaires privés aux enseignements (cf exemples paragraphe Objectif de la formation), mais aussi à l'encadrement de stages ou projets d'étudiants qui seront, pour partie, accueillis dans leurs locaux ou sur leurs sites.

La proximité du Pôle de compétitivité DREAM Eaux & Milieux, de l'Agence de l'Eau Loire-Bretagne, de la DREAL, et des entreprises associées à l'enseignement (BRGM et filiales ; ANTEA Group, Iddea, Valestia) assure des passerelles efficaces avec le tissu socio-économique.

Les entreprises, classées par domaines, dans lesquelles les étudiants trouvent des débouchés sont pour quelques exemples :

- * Dépollution (diagnostic, réductions des émissions, traitement) des sols, des eaux et de l'air : ANTEA, IDDEA, SERPOL, SUEZ -Remédiation, SAUR, Associations de Surveillance de la Qualité de l'air (ASQA), Institut Technique des Gaz et de l'Air (ITGA), Environnement SA, MeteoModem
- * Maîtrise des risques (industriels, chimiques, nucléaires, déchets) : Air Liquide, Dior, COORDEF...
- * Optimisation des systèmes énergétiques (efficacité énergétique des systèmes industriels, amélioration des processus physico-chimiques de combustion): Production-distribution-usage d'énergie : EDF, ENGIE, IFP Energies nouvelles, AREVA, CEA, Véolia, Dalkia, ...
- * Optimisation des moteurs (thermiques, hybrides...) et des systèmes de propulsion (terrestres, spatiaux) : transports terrestre, aéronautique et spatial : Renault, SNECMA, MBDA, EADS, ONERA, CNES, CILAS, Alcatel, Altran, Thalès ...

Le CPRE à l'International https://www.univ-orleans.fr/osuc/cpre#International

Un accord cadre d'échange (enseignement-étudiants) avec les Universités de Fudan (Shanghai) et de Shandong University (Jinan) – Chine est opérationnel avec pour prospective une double mastérisation à partir de la rentrée 2019

- Accueil de 2 à 3 étudiants de chaque université (Master 2 :Environmental Engineering School) pour suivre 3 modules (3×24h) en anglais « Atmospheric dynamics, Chemistry & Spectroscopy (2 mois) et un stage de fin d'étude (4 mois) dans un laboratoire de l'OSUC (LPC2E, ISTO ICARE INRA)
- ➤ Envois possible de 2 à 3 étudiants de CPRE pour suivre en anglais : 1 module à FDU (2-3 weeks) Aerosol chemistry and pollution (36h) et 1 module à SDU (2-3 weeks) Wetlands & soil chemistry for GHG emissions (36h), puis 3 mois de stage dans l'une des 2 universités

Parcours VSED (Véhicule et Systèmes énergétiques Durables)

OBJECTIFS

Le parcours **VSED** (Véhicules et Systèmes Energétiques Durables) du Master RE a pour objectif de former des cadres scientifiques capables de répondre aux enjeux énergétiques concernant le transport du futur et la transition énergétique. Ces cadres seront capables de dimensionner des systèmes énergétiques complets pour le transport, la production ou la valorisation de l'énergie. Ils seront qualifiés pour analyser et optimiser toute la chaîne énergétique : génération de travail mécanique ou de la poussée, intégration des différentes sources d'énergie (électrique, thermique, chimique...), réduction de la traînée aérodynamique, réduction des émissions polluantes à la source, récupération et valorisation de l'énergie fatale, optimisation du contrôle.

CONDITIONS D'ACCÈS

Le parcours **VSED** s'insère dans la spécialité Technologies pour l'Energie, l'Aérospatial et la Motorisation : http://www.univ-orleans.fr/polytech/sp%C3%A9cialit%C3%A9-technologies-pour-l%C3%A9nergie-la%C3%A9rospatial-et-la-motorisation

Plusieurs voies d'admission sont possibles en fonction du niveau d'études obtenu ; voir pour plus de détails: http://www.univ-orleans.fr/polytech/admissions#Etudiant

Une inscription complémentaire devra être souscrite à l'OSUC pour l'obtention du double diplôme (voie recherche du parcours VSED) après sélection des candidatures par les équipes pédagogiques du master RE.

COMPÉTENCES

Les étudiants acquièrent des compétences dans les domaines suivants :

- Aptitude à mobiliser les ressources d'un large champ scientifique et technique et être capable d'analyse, de méthodologie et de synthèse
- ➤ Capacité à en prendre en compte les enjeux industriels, économiques, sociétaux, professionnels et environnementaux pour concevoir dimensionner et gérer des systèmes énergétiques complets
- Capacité à modéliser et optimiser le fonctionnement d'un véhicule terrestre ou aérien
- Capacité à mettre en œuvre des approches numériques et expérimentales afin d'améliorer l'aérodynamisme d'un véhicule
- Maitrise de logiciel métier pour modéliser un groupe motopropulseur hybride ou une installation de cogénération

TERRAINS

Au cours de leur formation, les étudiants du parcours **VSED** auront accès à des plateformes expérimentales de haut niveau via les modules d'enseignements et/ou les projets. Parmi celles-ci figurent des bancs d'essai moteur à PRISME et dans les locaux de l'entreprise John Deere, des souffleries de grandes dimensions à PRISME.

LES METIERS

VSED ouvre à des Métiers dans le domaine de l'efficacité énergétique dans le secteur du transport, de la production et de la valorisation de l'énergie, par une approche globale des flux énergétiques avec des connaissances approfondies dans les domaines suivants :

- > Thermique, thermodynamique,
- Mécanique des fluides réactifs ou non,
- Automatique/contrôle.

Les secteurs d'activités professionnelles peuvent porter sur la :

- > Recherche & Développement (R&D) dans les domaines
 - * Du transport automobile, maritime aérien & spatial
 - * De la production d'énergie : centrale combiné gaz, smart grid, énergie renouvelable
- > Conduite d'installation : chaufferie, centrale nucléaire
- Etude et chargé d'affaire : mise au point moteur, récupération d'énergie fatale

Le domaine académique est pourvoyeur d'emplois de type :

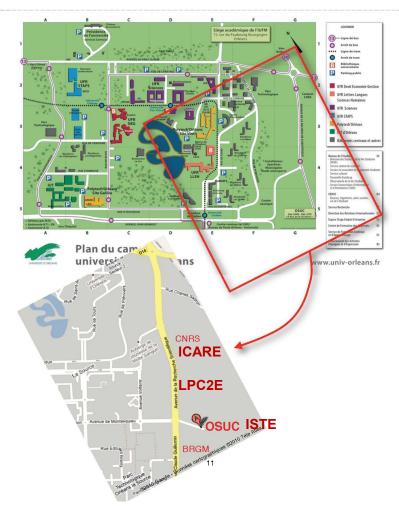
→ Poursuite en thèse, emploi dans les organismes et établissements de formation et de recherche (Maître de Conférences dans les Universités, Chargé de Recherche ou Ingénieur de Recherche au CNRS, à l'IRSN ...).

Le domaine non- académique est pourvoyeur d'emplois de type:

→ Chargé d'études scientifiques, chargé de mission, ingénieur et cadre technique en recherche et développement, cadre technique de l'environnement dans les bureaux d'études, les grands groupes privés et publics du secteur de l'énergie

Les entreprises dans lesquelles les étudiants trouveront des débouchés sont pour quelques exemples:

- → Dans le secteur automobile (Renault, PSA, Bosch, Delphi, John Deere)
- → Dans le secteur aéronautique et spatial (SAFRAN, SNECMA, MBDA, EADS, ONERA, CNES, Alcatel, Thalès..)
- → Dans le secteur de production / optimisation / usage d'énergie (EDF, ENGIE, AREVA, Véolia, Dalkia, Air Liquide)


Plan du campus et accès

La majorité des cours a lieu sur le Campus Géosciences, qui jouxte le campus CNRS d'Orléans-La Source.

Certains Cours TD et TP, en communs avec la spécialité CPRE du master CHIMIE, ont aussi lieu sur le campus universitaire, qui est à 15 min de marche.

Les deux campus sont facilement accessibles par les transports publics (tram A, bus n° 13 et 20).

SOMMAIRE

« Risques & Environnement »

CODE MODULE	SEMESTRE 1	RESPONSABLE	PAGE
OMA7RE01	Phénomène de transport	Guillaume DAYMA	18
OMA7RE02	Introduction aux spectroscopies optiques	Valéry CATOIRE	19
OMA7RE03	Expérimentation numérique et modélisation	Line JOURDAIN	20
OMA7RE04	Méthodes expérimentales appliquées à l'énergie	Saïd ABID	21
OMA7RE05	Catalyse hétérogène	Stéphanie DE PERSIS	22
OMA7RE06	Méthodes d'analyse et de caractérisation appliquées à l'environnement	Christophe GUIMBAUD	23
OMA7RE07	Chimie analytique expérimentale appliquées à l'environnement et à l'énergie	Saïd ABID	24
OMA7RE08	Chimie de l'atmosphère	Christophe GUIMBAUD	25
OMA7ST11	Science des sols	Ary BRUAND	26
OMA7ST14	Géochimie des eaux naturelles	Lionel MERCURY	27
OMA7VS01	Projet scientifique	Christian CAILLOL	28
OMA7VS02	Maîtrise de l'Energie	Christian CAILLOL	29
OMA7VS03	Dynamique des fluides	Christian CAILLOL	30
CODE MODULE	SEMESTRE 2	RESPONSABLE	PAGE
OMA8RE01	Gestion des déchets	Saïd ABID	32
OMA8ST18	Métrologie environnementale	Jean-Sébastien MOQUET	33
OMA8RE07	Spectroscopies moléculaires et photochimie	Valéry CATOIRE	34
OMA8RE08	Energie & Risques chimiques	Sandra JAVOY	35
OMA8RE04	Etudes pratiques appliquées à l'environnement	Saïd ABID	36
OMA8RE09	Réactivité multiphasique dans l'environnement	Christophe GUIMBAUD	37
OMA8VS01	Moteurs & Systèmes de propulsion	Pierre BREQUIGNY	39
OMA8VS02	Outils numériques & expérimentaux pour l'ingénieur	Ivan FEDIOUN	40
OMA8RE06	Stage – 6 semaines minimum	Stéphanie DE PERSIS Gisèle TONG	41

CODE MODULE	SEMESTRE 3	RESPONSABLE	PAGE
OMA9RE01	Aspects Fondamentaux de la Combustion & Formation des Polluants	Zeynep SERINYEL	44
OMA9RE02	Physique & dynamique de l'atmosphère	Line JOURDAIN	45
OMA9RE04	Modélisation chimique de la combustion	Saïd ABID	46
OMA9RE05	Risques industriels	Guillaume DAYMA	47
OMA9RE06	Pollution atmosphérique - Qualité de l'air	Christophe GUIMBAUD	48
OMA9RE07	Déchets & analyses du cycle de vie	Guillaume DAYMA	50
OMA9RE08	Pollution & traitements des eaux & des sols	Valéry CATOIRE	51
OMA9RE15	Approche projet & qualité - Insertion professionnelle	Clémence AGRAPART	52
OMA9RE10	Management & législation de l'environnement	Valéry CATOIRE	53
OMA9RE11	Explosion de gaz	Isabelle SOCHET	54
OMA9RE12	Projet	Christian CAILLOL	55
OMA9VS01	Turbulence / CFD avancée	Ivan FEDIOUN	56
OMA9VS02	Combustion et application	Fabien HALTER	57
OMA9VS03	Dynamique des gaz	Azeddine KOURTA	58
OMA9VS04	Moteurs	Pascal HIGELIN	59
OMA9VS05	Contrôle moteur & véhicule hybride	Guillaume COLIN	60
OMA9VS06	Systèmes énergétiques	Camille HESPEL	61
OMA9VS07	Aéroacoustique & aéroélasticité	Philippe DEVINANT	62
CODE MODULE	SEMESTRE 4	RESPONSABLE	PAGE
OMA0RE01	Stage – 4 mois minimum (Mars à Juin)	Valéry CATOIRE Zeynep SERINYEL	64
OMA0VS02	Projet d'entreprise	Pierre BREQUIGNY	65
OMA0VS01	Stage	Christian CAILLOL	66

Master RISQUES & ENVIRONNEMENT

Semestre 1

CODE APOGEE	OMA7RE01			OMA7RE02			OMA7RE03			
INTITULE	Phénomènes de transport			Introduction aux spectroscopies optiques			Expérimentation numérique & modélisation			
RESPONSABLE	Guillaume DAYMA			Va	Valéry CATOIRE			Line JOURDAIN		
VOLUME HORAIRE		24h		24h			24h			
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HORAIRE		24h		24h				12h	12h	
ECTS	3			3		3				
COMMUN										

CODE APOGEE	OMA7RE04			OMA7RE05			OMA7RE06		
INTITULE	Méthodes expérimentales appliquées à l'énergie			Catalyse hétérogène			Méthodes d'analyse & de caractérisation appliquées à l'environnement		
RESPONSABLE		Saïd ABID)	Stéphanie DE PERSIS			Christophe GUIMBAUD		
VOLUME HORAIRE		24h		24h		48h			
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP
REPARTITION HORAIRE			24h		24h			48h	
ECTS	3		3		5				
COMMUN									

CODE APOGEE	OMA7RE07			OMA7RE08			OMA7ST11		
INTITULE	Chimie analytique expérimentale appliquée à l'environnement & à l'énergie			Chimie de l'atmosphère			Science des Sols		
RESPONSABLE		Saïd ABID)	Christophe GUIMBAUD			Ary BRUAND		
VOLUME HORAIRE		24h		24h			24h		
	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP
REPARTITION HORAIRE		24h			24h			18h	6h
ECTS	3			3		2			
COMMUN									

CODE APOGEE	OMA7ST14			OMA7VS01			OMA7VS02			
INTITULE	Géochimie des eaux naturelles			Projet Scientifique			que	Maîtrise de l'énergie		
RESPONSABLE	Lior	nel MERCI	JRY	Ch	Christian CAILLOL			Christian CAILLOL		
VOLUME HORAIRE	24h						117h50			
	СМ	TD	TP	СМ	TE)	TP	СМ	TD	TP
REPARTITION HORAIRE		24h						52h50	30h	35h
ECTS	2			3				9		
COMMUN										

CODE APOGEE	OMA7VS03			
INTITULE	Dynan	nique des	fluides	
RESPONSABLE	Chr	istian CAIL	.LOL	
VOLUME HORAIRE	117h50			
DED A DELETION LION AIDE	СМ	TD	TP	
REPARTITION HORAIRE	36h25	51h25	30h	
ECTS	9			
COMMUN				

PARCOURS:	G³		Geo²Env		CPRE		VSED		
OMA7RE01	<u> </u>	Phénomènes de transport Transport phenoma							
Semestre	1	Langues	Langues de l'enseignement Français / Anglais				Langues de l'enseignement		
Crédits ECTS / Coefficient	3	Mise à jo	our le		1 ^{er} avril 2	1 ^{er} avril 2022			
Valuma haraira tatal	246	Dont		CM	TD		TP		
Volume horaire total	24h	Dont 24h							
Seuil de dédoublement			40 étu	ıd.					

Prérequis : Connaissances de base de l'atomistique

Objectifs: (savoirs et compétences acquis)

Notions de transferts thermiques

Comprendre l'origine microscopique des paramètres de transport (viscosité, diffusion, conductivité, capacité calorifique)

Contenu:

- ✓ Approche générale de physique statistique
- √ Théorie cinétique des gaz, potentiel d'interaction interatomique
- ✓ Equation de la chaleur ; conduction, convection, rayonnement

Modalités de contrôle des connaissances

	С	ONTROL	E CONTINU	CONTROLE TERMINAL CONTROLE MIX			
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT	
1 ^{ère} session							
• RNE	2	1h	Ecrit				
• RSE				2h	Ecrit		
2 ^{ème} session							
• RNE				2h	Ecrit		
• RSE				2h	Ecrit		

Responsable de l'enseignement : Guillaume DAYMA

Bibliographie: Hirschfelder, Curtiss, Bird, Molecular theory of gases and liquids, Wiley

Ressources pédagogiques : Documents photocopiés, cours en ligne (ENT), TD corrigés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Guillaume DAYMA	UO	Théorie cinétique des gaz Transferts thermiques		24h	

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED		
OMA7RE02			Introduction aux spectroscopies optiques Basics of optical spectroscopy				
Semestre	1	Langues de l'enseignement Français / Anglais					
Crédits ECTS / Coefficient	3	Mise à jour le		12 mai 2022			
Values bassing total	0.415	Dont	СМ	TD	TP		
Volume horaire total	24h	Dont 24h					
Seuil de dédoublement			40 étud.				

Prérequis : Connaissances de base de l'atomistique et la liaison chimique

Objectifs: (savoirs et compétences acquis)

Comprendre les différents processus d'échanges d'énergie entre matière et rayonnement électromagnétique

Contenu:

- ✓ Approche générale électromagnétique
- ✓ Fondements de la spectroscopie atomique
- ✓ Fondements de la spectroscopique moléculaire : phénomènes électroniques et vibrationnels

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE				2h	Ecrit	
• RSE				2h	Ecrit	
2 ^{ème} session						
• RNE				2h	Ecrit	
• RSE				2h	Ecrit	

Responsable de l'enseignement : Valéry CATOIRE

Bibliographie:

Fournie par les intervenants

J.M. HOLLAS, Spectroscopie, ed Dunod

Ressources pédagogiques : Documents photocopiés, cours en ligne (ENT), TD corrigés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Valéry CATOIRE	UO	Généralités ; Spectro moléculaire		16h	
Gisèle TONG	UO	Spectro atomique		8h	

PARCOURS:	G³	Geo	² Env	CPRE	VSED
OMA7RE03		Expérimentation	Expérimentation numérique & modélisation		
Semestre	1	Langue Français / Anglais			
Crédits ECTS / Coefficient	3	Mise à jour le		26 avril 2	2022
Walanaa la anaina 4a4al	0.41-	D4	CM	TD	TP
Volume horaire total	24h	Dont 12h 12h			
Seuil de dédoublement			40 étt	ud. 20 étud.	

Prérequis : Connaissances de base de l'atomistique

Objectifs: (savoirs et compétences acquis)

Initier l'étudiant au monde du numérique applicable aux nombreux domaines des sciences et de l'industrie ; acquérir les bases nécessaires à l'apprentissage d'un langage de développement avec par exemple la connaissance des structures de base en modélisation (boucles, conditions, notion de procédure/fonction).

Contenu:

Cours:

➤ Acquisition des bases pour l'apprentissage d'un langage de développement avec la connaissance des structures utiles en modélisation numérique et traitement de données (notion de boucles, conditions, procédure/fonction)

TP:

Etude pratique en combustion :

- > Application aux calculs sur l'équilibre (ex : température de flamme adiabatique, minimisation de l'enthalpie libre) Etude pratique en qualité de l'air :
 - Application du cours au traitement de données liées à la qualité de l'air et représentation graphique des principaux phénomènes

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONT	ROLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session	•					
• RNE			Comptes rendus TP			
• RSE					Comptes rendus TP	
2 ^{ème} session	•					
RNE / RSE					Comptes rendus TP	

Responsable de l'enseignement : Line JOURDAIN

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Line JOURDAIN	UO	Initiation + Modélisation appliquée au traitement de données en qualité de l'air		12h	12h

PARCOURS:] G³	Geo ² l	≣nv	CPRE	VSED	
OMA7RE04		Méthodes expé	Méthodes expérimentales appliquées à l'énergie			
Semestre	1	Langues de l'ens	Langues de l'enseignement Français / Anglais			
Crédits ECTS / Coefficient	3	Mise à jour le		13 avril 2022		
Valuus bausius tatal	0.415	Downt	СМ	TD	TP	
Volume horaire total	24h	Dont 24h				
Seuil de dédoublement				10 étud.		

Prérequis : Connaissances de base sur les aspects fondamentaux de la combustion, sur la catalyse hétérogène et sur les phénomènes d'adsorptions.

Objectifs: (savoirs et compétences acquis)

Cet enseignement pratique consiste à aborder les aspects fondamentaux de la combustion et à présenter les méthodes de caractérisation et d'analyse physico-chimique couramment utilisées dans le domaine de la production de l'énergie et la transformation de la biomasse.

Contenu:

Mesure de la vitesse fondamentale de propagation

- > Etude des conditions de stabilité d'une flamme de prémélange
- > Détermination de la chaleur de combustion de la biomasse susceptible d'être utilisé dans la production de l'énergie.
- > Prélèvement et analyse des gaz issus de la combustion
- > Extraction Accélérée par Solvant (ASE) de la matière extractible pour mesure de la matière extractible totale d'une biomasse organique.
- > Détermination des surfaces spécifiques des solides (par méthode BET) tels que le charbon actif ou le charbon végétal issu de la pyrolyse du bois

Modalités de contrôle des connaissances

	С	CONTROLE CONTINU			OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE			Rapport TP			
• RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Saïd ABID

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Saïd ABID	UO	Méthodes expérimentales appliquées à l'énergie			12h
Christian CAILLOL	UO	Méthodes expérimentales appliquées à l'énergie			12h

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED	
OMA7RE05		Catalyse hétérogène Heterogeneous catalysis				
Semestre	1	Langues de l'enseignement Français / Anglais				
Crédits ECTS / Coefficient	3	Mise à jour le		12 mai 2022		
Values bareiro tatal	0.415	Dont	СМ	TD	TP	
Volume horaire total	24h	Dont 24h				
Seuil de dédoublement				40 étud.		

Prérequis : Cinétique, Thermodynamique / Kinetics, Thermodynamics

Objectifs: (savoirs et compétences acquis)

Ce cours donne :

- > Des connaissances approfondies sur l'adsorption
- Les principes de base de la catalyse hétérogène

Il présente également un panorama des différents types de catalyseurs et des nombreuses applications de la catalyse hétérogène, principalement dans le domaine de la pétrochimie, de la chimie fine et de la protection de l'environnement (dépollution de l'air et de l'eau) et de la conversion de la biomasse.

The course gives:

- > a complete overview on adsorption
- > the basic principles of heterogeneous catalysis.

The course also presents the different categories of catalysts and a survey of catalytic processes used in industrial processes such as petrochemistry, fine chemistry, environmental protection (air and water depollution) and biomass conversion

Contenu:

L'adsorption. Distinction entre physisorption et chimisorption. Détermination des surfaces spécifiques et de la porosité des catalyseurs. Surface BET. Isothermes de Langmuir. Cinétique de réaction en surface. Classification des catalyseurs et critères de choix. Applications : catalyse hétérogène dans les procédés industriels.

Adsorption. Chemisorption and Physisorption. Adsorption isotherms (Langmuir, BET). The rates of surface processes. Adsorption and Catalysis. Examples of catalysis in industrial processes.

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						-
RNE / RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Stéphanie DE PERSIS

Bibliographie: Fournie par les intervenants / Given by the Teachers

Ressources pédagogiques : Diaporama disponible en ligne sur CELENE / Powerpoint slideshow On line on CELENE

Intervenants et Répartition								
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP			
Stéphanie DE PERSIS	UO	Catalyse hétérogène		24h				

PARCOURS:	G³	Geo ² l	Env 💮	CPRE	VSED	
OMA7RE06	l'environneme	Méthodes d'analyse et de caractérisation appliquées à l'environnement Methods of analysis & characterization applied to the environment				
Semestre	1	Langues de l'enseignement Français				
Crédits ECTS / Coefficient	5	Mise à jour le		31 mars 2022	2	
Valuma havaiva tatal	40h	Dont	СМ	TD	TP	
Volume horaire total	48h	Dont		48h		
Seuil de dédoublement			40 étud.			

Prérequis : Analytique de L3 Chimie

Objectifs: (savoirs et compétences acquis)

Donner des connaissances approfondies sur les méthodes de prélèvements, d'échantillonnage, d'extraction et d'analyse quantitatives (méthodes séparatives) de polluants dans différentes matrices environnementales (air, eaux, sols, produits de consommations)

Contenu:

Méthodes physico-chimiques d'analyse : 24h

- Méthodes séparatives (CPG, HPLC, CEI, CES) et Couplages (12h)
- Spectrométrie de masse et Couplages (12h)

Prélèvements ; Echantillonnage ; Extraction : 16h

- > LLE, SPE, SPME, ASE, SFE, MAE, Espace de tête, etc.
- > Applications au domaine de l'environnement (sols, air, eau, aliments...)

Introduction à la Mécanique des fluides : 8h

- > Transfert de masses.
- > Statique des fluides. Les écoulements fluides : les équations de continuité.
- > Fluides parfaits incompressibles. Fluides réels incompressibles.
- > Equation de Bernoulli.

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTROLE TERMINAL		CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE				3h	Ecrit	
• RSE				3h	Ecrit	
2 ^{ème} session						
RNE / RSE				3h	Ecrit	

Responsable de l'enseignement : Christophe GUIMBAUD

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Christophe GUIMBAUD	UO	Méthodes séparatives et couplages		12h	
Christophe GUIMBAUD	UO	Prélèvements ; Echantillonnage ; Extraction		16h	
Christelle BRIOIS	UO	Spectrométrie de masse et couplages		12h	
Guillaume DAYMA	UO	Introduction à la mécanique des fluides		8h	

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED	
OMA7RE07		Chimie analytique expérimentale appliquées à l'environnement & à l'énergie				
Semestre	1	Langues de l'e	nseignement	Français		
Crédits ECTS / Coefficient	3	Mise à jour le		13 avril 2022		
Valuus karsina tatal	0.45	Dant	СМ	TD	TP	
Volume horaire total 24h		Dont			24h	
Seuil de dédoublement					16 étud.	

Prérequis : Bases théoriques de Spectroscopie et de Chimie analytique

Objectifs: (savoirs et compétences acquis)

Acquérir une compétence dans le domaine de l'extraction des pollutions dans les eaux et les sols et être capable de choisir la méthode adaptée pour les analyser.

Contenu:

L'unité est constituée d'un enseignement sous forme de travaux pratiques en cohérence avec les UE théoriques de Spectroscopie et Chimie analytique du semestre. Ces différentes techniques seront utilisées dans la détermination des teneurs en Organiques Volatils (COV), en Hydrocarbures Aromatiques Polycycliques (HAP) ou en métaux dans des sols et des eaux polluées.

Au cours de cette formation, l'accent est mis sur la maîtrise des méthodes suivantes :

- ✓ Méthodes de préparation des échantillons,
- ✓ Méthodes spectroscopiques d'analyse : IRTF, UV-Visible, fluorescence, émission de flame
- ✓ Méthodes séparatives d'analyse (CPG, CG/SM, HPLC-UV)

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE			Rapports TP			
• RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Saïd ABID

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Saïd ABID	UO	Chimie analytique expérimentale appliquées à l'environnement et à l'énergie			24h

PARCOURS:	G³	Geo ² E	Env	CPRE	VSED	
OMA7RE08	Chimie de l'atmosphère Atmospheric Chemistry					
Semestre	1	Langue Français / Anglais				
Crédits ECTS / Coefficient	3	Mise à jour le		9 avril 2022		
Valuma hamaina tatal	0.415	Domt	CM	TD	TP	
Volume horaire total	24h	Dont		24h		
Seuil de dédoublement				40 étud.		

Prérequis : L3 Chimie ; Physique-Chimie, Géosciences

Objectifs: (savoirs et compétences acquis)

Donner des connaissances approfondies sur les processus physico-chimiques atmosphériques (troposphère et stratosphère) en lien avec les problématiques environnementales (pollution photo-oxydante en zones urbaine et rurale, trou d'ozone stratosphérique, climat) ; cycles biogéochimiques (couplage géosphère-atmosphère)

Contenu:

Troposphère (14h)

- Structure physico chimique de l'atmosphère (Circulation troposphérique ; effet saisonnier) ; Transport réactif : temps de mélange et durée de vie des espèces)
- √ Mécanismes cinétiques appliqués à l'atmosphère : lois de vitesse et photolyse
- ✓ Processus (photo)chimiques de la pollution troposphérique : Winter et Summer smogs ; Sources et puits des oxydants atmosphériques ; mécanismes réactionnels avec de COV (en fonction de leurs origines fonctionnelles, anthropiques et biogéniques) et formation de polluants secondaires ; TD : calculs de photo-oxydants et de polluants à l'état stationnaire ; Régimes chimiques (Diagramme isoplèthe) et stratégies de réduction des précurseurs d'ozone
- ✓ Les cycles (bio)géochimiques : transport longues distances, et impacts environnementaux -Cycle des composés carbonés, azotés (biogéosystèmes continentaux naturels et anthropisés) ; Cycles des composés soufrées et halogénés ; Interaction entre cycles C, N, X, S : ex Milieux naturels : panaches volcaniques ; Milieux anthropisés : Grandes zones urbaines côtières polluées ; Echanges océans-atmosphère

Stratosphère (10h)

- ✓ Equilibre de l'ozone stratosphérique selon le cycle de Chapman et avec toutes les espèces actives (halogénées, hydroxygénées, azotées) Circulation atmosphérique à l'échelle globale
- ✓ Tendances de l'ozone stratosphérique global Trou d'ozone saisonnier aux pôles. Mécanismes chimiques dans la stratosphère incluant la chimie hétérogène et les mécanismes de formation des nuages stratosphériques polaires La réduction des émissions d'halogènes & conséquences sur l'ozone. Interactions ozone –climat et évolution de l'ozone dans le futur
- ✓ Instrumentations sol et embarquée pour l'observation de la stratosphère

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE		
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT		
1 ^{ère} session								
RNE / RSE				2h	Ecrit			
2 ^{ème} session								
RNE / RSE				2h	Ecrit			

Responsable de l'enseignement : Christophe GUIMBAUD

Intervenants et Répartition									
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP				
Christophe GUIMBAUD	UO	Troposphère		14h					
Valéry CATOIRE	UO	Stratosphère		10h					

PARCOURS:	G³	Geo ² l	≣nv	CPRE	VSED	
OMA7ST11 Science de			sols			
Semestre	1	Langue	Langue Anglais ou Français			
Crédits ECTS / Coef.	2	Mise à jour le		20 avril 2022		
Volume horaire total	24h	Dont	СМ	TD	TP	
Volume noralle total	2411	Dont		18h	6h	
Seuil de dédoublement :				40 étud.	10 étud.	

Prérequis : Eléments de géologie générale.

Objectifs: (savoirs et compétences acquis). Maîtrise du vocabulaire et des concepts utilisés pour la description des sols. Acquisition des éléments essentiels à la compréhension des propriétés des sols et de leur fonctionnement (analyse, modélisation et simulation de l'échelle locale à l'échelle du paysage).

Contenu:

Partie 1 (9h): Pédologie descriptive.

- Grands types de sols, classification et taxonomie.
- Principe de description de sols : à l'échelle du paysage (unité typologique de sol, unité cartographique de sol), et d'un profil de sol (horizons, ...)
- Sortie terrain : visite d'une fosse pédologique (INRA Ardon)

Partie 2 (6h): Pédologie fonctionnelle.

- Structure et micro-structure ; porosité et perméabilité ; notion de double milieu
- Continuum eau-sol-plante-atmosphère, rhizosphère
- Interactions sol eau. Propriétés de rétention et de transfert
- Fonctionnement hydrique à l'échelle du profil de sol

Partie 3 (9h): Zone critique.

- Le sol, un réacteur/filtre biophysicochimique : constituants et architecture des constituants. Transferts eau, gaz, solutés, particules. Gradients et mouvements ascendants-descendants.

Typologie et mécanismes de formation des produits de l'altération supergène. Les caractéristiques d'un profil d'altération ; de l'observation aux applications.

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral/écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
RNE / RSE				3h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Ary BRUAND

Bibliographie:

P. Stengel & S. Gelin (1998) Sol, interface fragile, INRA Ed. D. Hillel (1998) Environmental soil Physics, Academic Press. Guide de description des sols. D. Baize et B. Jabiol. INRA Ed. Environmental soil physics. D. Hillel, Academic press

Ressources pédagogiques : support de cours sur l'ENT

PARCOURS:	G³		Geo²Env		CPRE		VSED		
OMA7ST14		Géoch	Géochimie des eaux naturelles						
Semestre	1	Langue	Langue Français						
Crédits ECTS / Coefficient	2	Mise à	jour le		20 avril 2022				
Values haveing total	0.415	Dont	С	M	TD		TP		
Volume horaire total	24h	Dont			24h				
Seuil de dédoublement			40 étu	ıd.					

Prérequis : Eléments d'hydrogéologie et de géochimie des eaux.

Objectifs: (savoirs et compétences acquis)

Comprendre et maîtriser les notions et concepts nécessaires à une bonne représentation des ressources en eau et à leur gestion durable eau. Introduction à la régulation chimique dans les aquifères naturels : acquisition du fond géochimique naturel, résilience aux effets anthropiques.

Contenu:

- ✓ Tampons acido-basiques en milieux naturels: réserve alcaline, pH, résilience.
- ✓ Tampons redox en milieux naturels : métaux et métalloïdes et évènements anoxiques.
- ✓ Chromatographie géochimique en milieux naturels : silicates primaires et secondaires ; carbonates et évaporites

Modalités de contrôle des connaissances

	С	ONTROL	E CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE				
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT				
1ère session										
RNE / RSE				3h	Ecrit					
2 ^{ème} session										
RNE / RSE				2h	Ecrit					

Responsable de l'enseignement : Lionel MERCURY

Bibliographie:

Applied Hydrogeology, C.W. FETTER, Prentice Hall. // Groundwater, R.A. FREEZE & J.A. CHERRY. C.A.J. Appelo & D. Postma (2005) Geochemistry, groundwater and pollution, 2nd Ed., Balkema. // G. MICHARD (2002) Chimie des eaux naturelles, 2nd Ed., Publisud.

Ressources pédagogiques : Supports de cours en ligne sur site web université

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Lionel MERCURY	UO	Géochimie des eaux naturelles		24h	

PARCOURS:		3³	Geo ² E	Env	CPRE	VSED					
OMA7V	S01		Projet Scientif	fique (Pol	ytech')						
Semestre		1	Langues de l'ei	nseigneme	ent Français						
Crédits ECTS / Coeffi	cient	3	Mise à jour le		9 avril 202	2					
Volume horaire total			Dont	СМ	TD	ТР					
Seuil de dédoubleme	nt										
Descriptif de l'enseignement											
Prérequis : Connais	sances ac	quises da	ıns les UE de spéci	alisation							
 ✓ Veille bibliograph ✓ Réalisation et and ✓ Rédaction d'une 	ude à parti e scientific lématique ique. alyse d'un synthèse s	que en lien av e base de sous form	vec les thématiques données. e d'un article scien		dans les UE de spé	cialisation.					
Modalités de con	ılı —			001170	<u> </u>						
NOTE ELIMINATOIRE			E CONTINU Nature		OLE TERMINAL Nature	CONTROLE MIXTE Répartition en %					
Aèro i	Nb CC	Durée	(oral / écrit)	Durée	(oral/écrit)	entre CC et CT					
1ère session	0		Dannanta	<u> </u>		<u> </u>					
• RNE	2		Rapports								
• RSE				Sans objet							
2ème session				4b Contagnes							
RNE / RSE				1h	Soutenance						
• RSE											

Bibliographie: Fournie par les intervenants et recherche en autonomie

Ressources pédagogiques :

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED		
OMA7VS02		nergie (Poly	tech')				
Semestre	1	Langues de l'e	nseignement	Français / A	Français / Anglais		
Crédits ECTS / Coefficient	9	Mise à jour le		12 mai 2022			
Valuus kansin tatal	447550	Domt	СМ	TD	TP		
Volume horaire total	117h50	Dont	52h50	30h	35h		
Seuil de dédoublement							

Prérequis : Connaissances en thermodynamique, physique et mécanique

Objectifs: (savoirs et compétences acquis)

- Utiliser des outils indispensables pour appréhender les différentes sources potentielles d'énergie (issues des ressources classiques ou renouvelables) que ce soit pour la production d'énergie (thermique ou motrice) ou la maîtrise de la dépense en énergie pour le bâtiment.
- > Appliquer les grands principes du traitement acoustique des salles ou des dispositifs bruyants

Contenu:

- ✓ Les principaux enjeux pour l'énergie de demain : Ressources primaires et consommation finale d'énergie en France et dans le monde. Energie et macro-économie : un système de production centré sur l'énergie. Emissions anthropiques : des émissions à la concentration et à leur impact sur le climat.
- ✓ Les énergies renouvelables : L'énergie solaire thermique : dimensionnement des capteurs, étude d'un système solaire complet. L'énergie éolienne. Eco-conception : principes de l'analyse de cycle de vie. Les bio-carburants.
- ✓ La thermique du bâtiment : Optimisation des bâtiments d'un point de vue thermique, règlementation thermique RT2012. Initiation au génie climatique : renouvellement d'air, climatisation.
- Vibrations et acoustique : Détermination des modes de vibration d'éléments simples. Détermination des Coefficienticients de réflexion et de transmission des ondes acoustiques lors de modifications de propagation. Dimensionnement des atténuateurs acoustiques. Détermination des modes de résonance dans une salle et identification des solutions pour les amortir. Qualification des propriétés acoustiques d'une pièce.
- ✓ La combustion industrielle : Définition et détermination des paramètres caractéristiques de la combustion. Combustibles et comburants : équation de combustion en stoechiométrie, richesse, excès d'air. Analyse des émissions polluantes. Chaleur et température de combustion.
- ✓ Travaux pratiques d'énergétique : Mesure de vitesse de front de flamme et diagramme de stabilité d'une flamme de prémélange. Calorimétrie : mesure de la chaleur de combustion de différents combustibles. Solaire thermique : étude du rendement d'un capteur solaire. Logiciel ThermOptim : initiation pompe à chaleur, récupération des eaux usagées de douche, turbine à vapeur, production d'énergie à partir d'eau salée.

douche, turbine à vape		0	gie à partir d'eau salée		Jilaleur, recupe	ialion u	es eaux usay	ees ue			
Modalités de contrôle des connaissances											
	С	ONTROL	E CONTINU	CONTR	OLE TERMIN	IAL	CONTROLE	MIXTE			
	Nb CC	Durée	Nature (oral / écrit)	Diiroo			Répartition entre CC e				
1ère session											
• RNE	10	Variable	Oral et Ecrit								
• RSE		Sans objet									
2 ^{ème} session											
RNE / RSE				2h	Ecrit						
Responsable de	l'ensei	gneme	nt : C	hristia	n CAILLC)L					
Bibliographie :											
Intervenants et R	Intervenants et Répartition										
Nom-Prénom	Orgar	nisme	Contenu pédagogique de l'intervenant CM TD TP								
	Cf Polytech'										

PARCOURS:	G³	Geo ²	Env	CPRE	VSED				
OMA7VS(03	Dynamique d	Dynamique des fluides (Polytech')						
Semestre	1	Langues de l'e	nseignement	Français / Ang	Français / Anglais				
Crédits ECTS / Coeffici	ient 9	Mise à jour le		12 mai 2022	12 mai 2022				
Valuusa kanaina tatal	447550	Dont	СМ	TD	TP				
Volume horaire total	117h50		36h25	51h25	30h				
Seuil de dédoublement	t .	-							

Prérequis : Connaissances en thermodynamique, physique et mécanique des fluides

Objectifs: (savoirs et compétences acquis)

- > Comprendre les principes physiques de la dynamique des fluides et des transferts thermiques dans différents régimes. Etre capable de les appliquer dans des configurations simples.
- ➤ Comprendre et analyser les principaux types d'écoulements rencontrés en aérodynamique des véhicules et de leurs composants et ainsi sur leurs effets sur les performances aérodynamiques.
- > S'initier concrètement à la simulation d'écoulements dans des géométries académiques ou industrielles. Etre capable de choisir les modèles physiques les mieux adaptés.
- > Savoir réaliser une expérience et critiquer les résultats.

Contenu:

- ✓ Dynamique des gaz : Rappel des équations du mouvement et de l'énergie. Mise en évidence des nombres adimensionnels et notion de similitude. Introduction aux écoulements compressibles en fluide parfait ; relations isentropiques ; ondes de choc ; étude de la tuyère de Laval.
- ✓ Couche limite : Théorie de la couche limite dynamique et thermique, solutions auto-similaires et lois d'échelle. Nombres adimensionnels caractéristiques des transferts thermiques. Analogie de Reynolds.
- ✓ Aérodynamique externe : Les principaux phénomènes : écoulements attachés et décollés, 2D & 3D, subsoniques et supersoniques. Cas du profil et de l'aile en incompressible. Potentiel linéarisé en compressible, applications en 2D sub et supersonique. Application à des véhicules et systèmes énergétiques.
- ✓ Turbulence : Introduction à la turbulence. Approche statistique au travers du formalisme de Reynolds (RANS). Mise en évidence du problème de fermeture et introduction du modèle de viscosité turbulente.
- ✓ Travaux pratiques expérimentaux : Prise en main d'instruments de mesure en dynamique des fluides. Développement d'une couche limite. Transition laminaire/turbulent et conséquences sur les efforts aérodynamiques de corps simples. Tuyère de Laval.
- ✓ Travaux pratiques numériques : Simulation d'écoulements turbulents sur la suite logicielle ANSYS. Prise en main sur un cas simple : écoulement de Poiseuille, comparaison avec la solution analytique. Ecoulement dans une chambre de combustion simplifiée. Profil d'aile de Mach 0.3 à Mach 3. Tuyère de Laval.

Modalités de contrôle des connaissances

		ONTROLE	CONTINUL	CONTE	OLE TERMINAL	CONTROL E MIXTE				
	C	ONTROLE	E CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE				
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT				
1 ^{ère} session										
• RNE	10	Variable	Oral et Ecrit							
• RSE				:	Sans objet					
2 ^{ème} session										
RNE / RSE				2h	Ecrit					
	•					•				

Christian CAILLOL

Responsable de l'enseignement :

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : polycopiés et documents disponibles sur l'espace numérique de travail

Semestre 2

CODE APOGEE	OMA8RE01			(OMA8ST1	8	(OMA8RE07			
INTITULE	Gestion des déchets				Métrologio ironneme		Spectroscopies moléculaires & photochimie				
RESPONSABLE	Saïd ABID			Jean-Se	ébastien M	OQUET	Valéry CATOIRE				
VOLUME HORAIRE		24h		24h			24h				
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP		
REPARTITION HURAIRE		24h			10h	14h		24h			
ECTS	3			3 2 2			4				
COMMUN											

CODE APOGEE	OMA8RE08			OMA8RE04			OMA8RE09			
INTITULE	Energie & Risques chimiques			Etudes pratiques appliquées à l'environnement			Réactivité multiphasique dans l'environnement			
RESPONSABLE	Sandra JAVOY			Saïd ABID			Christophe GUIMBAUD			
VOLUME HORAIRE	24h			24h			24h			
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HURAIRE		24h				24h		24h		
ECTS	4			3			4			
COMMUN										

CODE APOGEE	OMA8VS01			C	OMA8VS0	2	C	MA8RE0	6
INTITULE	Moteurs & Systèmes de propulsion			Outils numériques & expérimentaux pour l'ingénieur			Stage 6 semaines minimum		
RESPONSABLE	Pierre BREGUIGNY			Ivan FEDIOUN			Stéphanie DE PERSIS Gisèle TONG		
VOLUME HORAIRE		120h		45h			10h		
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP
REPARTITION HURAIRE	68h75	5h	46h25	16h25		28h75		10h	
ECTS	9			4			10		
COMMUN									

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED			
OMA8RE01		Gestion des d	estion des déchets					
Semestre	2	Langues de l'enseignement Français						
Crédits ECTS / Coefficient	3	Mise à jour le		13 avril 2	2022			
Valuus la susius tatal	0.415	Dant	СМ	TD	TP			
Volume horaire total	24h	Dont		24 h	ı			
Seuil de dédoublement			40 étu	ıd.				

Prérequis: Connaissances générales en chimie

Objectifs: (savoirs et compétences acquis)

Aperçus sur la gestion des déchets ménagers, industriels : les enjeux actuels et futurs.

Contenu:

- ✓ Déchets et résidus industriels : DII, DIB et DIS : collecte, tri, filières de traitement, valorisation des déchets, de la biomasse ; réglementation
- ✓ Stockage des déchets industriels : conception, surveillance, impacts, réhabilitation des sites ; stockage et/ou entreposage (en surface / subsurface / en profondeur) des déchets nucléaires, laboratoires souterrains ; centres de stockage des déchets industriels ; réhabilitation des sites
- ✓ Déchets nucléaires : radioactivité et notions sur la gestion des déchets radioactifs.

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE	
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT	
1 ^{ère} session	•	-		=			
RNE / RSE				2h	Ecrit		
2 ^{ème} session							
RNE / RSE				2h	Ecrit		

Responsable de l'enseignement : Saïd ABID

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Saïd ABID	UO			18h	
Guillaume DAYMA	UO			6h	

PARCOURS:	G³	Geo ²	Env	CPRE	VSED		
OMA8ST	18	Métrologie e	Métrologie environnementale				
Semestre	2	Langue Français					
Crédits ECTS / Coef.	3 Géo ² Env 4 VSED 2 CPRE	Mise à jour le		23 mai 2022	23 mai 2022		
Values bassiss total	0.41-	Dont	CM	TD	TP		
Volume horaire total	24h	Dont 10h 14h					
Seuil de dédoublement				20 étud.	4 étud.		

Prérequis : « Sciences des sols » et « Stratigraphies et genèse des formations superficielles » (S1), hydrogéochimie (S1), « géochimie organique » et « géochimie isotopique » (S1)

Objectifs: (savoirs et compétences acquis) Les objectifs de ce module sont 1) de mettre les étudiants en situation de recherche (élaboration d'une question scientifique en lien avec les problématiques des sites) en s'appuyant sur des dispositifs d'observation des milieux naturels, 2) de conceptualiser la mise en place d'un protocole pour répondre à la question, 3) d'acquérir, traiter et mettre en forme les données acquises ou à acquérir pour apporter une réponse à la question, 4) d'amener les étudiants à avoir un regard critique sur les instruments (limites, complémentarité) et les données (quantités, stockage, traitement, control qualité).

Contenu: Ce module s'inscrit dans une continuité d'approche terrain-observation-expérimentation-modélisation, qui sera déroulé tout au long du master. Plus spécifiquement, ce module adresse le moment clé ou à partir des résultats de l'expérimentation et de la modélisation, le chercheur doit réfléchir à de nouvelles questions et tester de nouvelles hypothèses. Pour ce faire, une stratégie de mesure dans le but d'acquérir des données à même de répondre à la question doit être mise en place.

Après une introduction (1h) sur les différents types d'observatoires, leurs missions, leur place dans le paysage scientifique français et international, la première partie de cette unité sera consacrée à la présentation (1.5h chacun) de 5 sites instrumentés du projet PIVOTS: OZNS, OS2, le super-site Voltaire-PRAT, la tourbière de la Guette et PRIME, ainsi que la plateforme CAPRYSSES (présentiel, 7.5h au total, tous les groupes réunis).

Ensuite, chaque groupe (4 étudiants par groupe, 4 groupes) disposera d'un mois pour élaborer un questionnement scientifique nouveau sur le site qu'il a choisi, sur la base d'échanges que le groupe sollicite auprès des chercheurs concernés (4h, non présentiel).

Une fois la question posée, chaque groupe aura la possibilité de mettre en place des dispositifs de mesures et/ou d'effectuer des mesures complémentaires pour compléter des chroniques existantes et/ou participer au fonctionnement d'appareils déjà en place sur les sites d'observation, avec leurs encadrants respectifs. Puis, à partir des données, chaque groupe devra rédiger un rapport dans lequel devront être exposés i) la question posée avec les hypothèses de travail, ii) la stratégie de mesures mise en œuvre, iii) les résultats obtenus, et iv) une discussion : si possible, cette dernière devra mettre l'accent sur les capteurs qui pourraient être déployés pour développer d'avantage la question posée. Ce travail sera encadré pour chaque groupe par un chercheur impliqué dans l'observatoire concerné (14h TD affecté par groupe) et un travail de réflexion/rédaction en groupe (20h, non présentiel).

Bilan horaire:

Présentiel: 24h (10h TD, 14h TP avec encadrant)

Non présentiel : 24h (4h réflexion initiale, 20h rédaction du rapport)

Modalités de contrôle des connaissances									
	CONTROLE CONTINU CONTROLE TERMINAL CONTROLE MIXT								
	Nb CC	Durée	Nature (oral/écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT			
1 ^{ère} session	1ère session								
RNE/RSE				15mn	Rapport écrit (50%) Oral (50%)				
2 ^{ème} session									
RNE / RSE				15mn	Oral				
Responsable de l'enseignement : Jean-Sébastien MOQUET									

PARCOURS:	G³		Geo²Env	/	CPRE		VSED
OMA8RE07		Spectroscopies moléculaires & photochimie Molecular spectroscopy & photochemistry					
Semestre	2	Langues de l'enseignement Français / English			ish		
Crédits ECTS / Coefficie	ent 4	Mise à	jour le / <i>Upd</i>	late	12 mai 20)22	
Valuma haraira tatal	246	Dont		СМ	TD		TP
Volume horaire total 24h		Dont			24h		
Seuil de dédoublement				courses tutoria			

Prérequis / Prerequisites :

- UE du S1 : Introduction aux spectroscopies optiques
- UE from Semester 1 : Introduction to optical spectroscopies

Documents and basic knowledge are provided for students who have not followed the 1st semester UE

Objectifs / Objectives: (savoirs et compétences acquis / knowledge and skills acquired)

- Acquérir les connaissances nécessaires à la caractérisation et à la quantification de composés chimiques dans l'environnement. Comprendre les différents processus de transfert d'énergie et de photodissociation des molécules
- Acquire the knowledge necessary for the characterization and quantification of chemical compounds in the environment. Understand the different processes of energy transfer and photodissociation of molecule

Contenu /Content:

- ✓ Spectroscopies moléculaire électronique.
 - Spectroscopie d'absorption et de diffusion Raman : rotationnelle, vibrationnelle et rovibrationnelle /
- ✓ Electronic molecular spectroscopy.

 Absorption and Raman Scattering Spectroscopy: rotational

Absorption and Raman Scattering Spectroscopy: rotational, vibrational and rovibrational

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE	
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT	
1 ^{ère} session	•			-			
RNE / RSE				2h	Ecrit		
2 ^{ème} session						-	
RNE / RSE				2h	Ecrit		

Responsable de l'enseignement : Valéry CATOIRE

Bibliographie: J.M. HOLLAS, Modern Spectroscopy, Wiley ed.

Ressources pédagogiques: Documents photocopiés, cours en ligne (ENT), TD corrigés

Education ressources: Photocopied documents, on line courses (ENT), corrected tutorials and exams

Nom-Prénom Organisme Contenu pédagogique de l'intervenant		СМ	TD	TP	
Valéry CATOIRE	UO	Absorption and Scattering molecular spectroscopy		14h	
Sébastien CELESTIN	UO	Electronic molecular spectroscopy		10h	

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED	
OMA8RE08	Energie et ris	Energie et risques chimiques				
Semestre	2	Langues de l'enseignement Français / Anglais				
Crédits ECTS / Coefficient	4	Mise à jour le		26 août 2022		
Valuma havaiva tatal	246	D 1	СМ	TD	TP	
Volume horaire total	e horaire total 24h Dont			24h		
Seuil de dédoublement				40 étud.		

Prérequis : Connaissances de bases en chimie

Objectifs: (savoirs et compétences acquis)

Energie:

- Acquisition d'une culture scientifique générale sur l'énergie : connaître les enjeux actuels liés à l'énergie aux échelles mondiale, européenne et nationale et connaître les différentes sources d'énergie, en particulier celles utilisées pour la conversion chimique.
- Acquisition d'une culture scientifique générale sur le domaine de la combustion : savoir écrire une réaction de combustion et en faire l'étude théorique (pouvoir calorifique, pouvoir comburivore, pouvoir fumigène, température théorique de combustion), connaître les dispositifs fixes et mobiles de combustion, et le type de combustible utilisé pour chacun d'eux.

Risques chimiques:

- Connaître les différentes classes de risque chimique.
- Savoir lire et utiliser une Fiche de Données de Sécurité.
- > Connaître les actions de prévention du risque chimique

Contenu:

- ✓ <u>Energie</u>: Introduction sur la problématique de l'énergie; généralités sur la combustion (procédés de combustion fixes et mobiles, combustibles, inflammation, couplage combustion/captage du CO₂, pollution et applications).
- ✓ <u>Risques Chimiques</u>: Présentation du Système Général Harmonisé (SGH) de classification des produits chimiques, des différentes classes de risque chimique et des critères de classification associés, des facteurs de risque et des étapes d'une démarche de prévention du risque chimique.

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1ère session						
RNE / RSE				1h X 2	Ecrit (50%/50%)	
2 ^{ème} session						
• RNE / RSE				2x15mn	Oral	

Responsable de l'enseignement : Sandra JAVOY

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés ou/et électroniques

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Stéphanie DE PERSIS	UO	Energie		10h	
Sandra JAVOY	UO	Risques chimiques		6h	
Emilie LOPEZ	Dior	Risques chimiques (santé et environnement »		4h	
Valérie NAUDET	Air Liquide	Risque incendie et ATEX		4h	

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED		
OMA8RE04		Etudes pratique	Etudes pratiques appliquées à l'environnement				
Semestre	2	Langues de l'enseignement Français / Anglais			lais		
Crédits ECTS / Coefficient	3	Mise à jour le 13 avril 2022					
Valuma haraira tatal	24h	Dont	СМ	TD	TP		
Volume horaire total	24 N	Dont			24h		
Seuil de dédoublement				16 étud.			
				-			

Prérequis : Connaissances générales en chimie et en méthodes analytiques

Objectifs: (savoirs et compétences acquis)

Donner des compétences de base sur l'analyse chimique des milieux aquatiques, des sols et de l'air

Contenu:

- ✓ Mesurer la quantité de CO₂ dans l'air par IR et SM ;
- ✓ Obtenir les caractéristiques générales des eaux de différents milieux (DCO, O₂ dissous) et minéraux majeurs (chromatographie ionique).
- ✓ Obtenir les caractéristiques et la capacité d'échange cationiques des sols agricoles.
- ✓ Déterminer la composition en nitrate et en phosphate par une méthode spectroscopique dans les eaux potables

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE			Rapport TP			
• RSE				2h	Ecrit	
2 ^{ème} session	<u> </u>					
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Saïd ABID

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Intervenants et Répartition (indiquer la ventilation des heures entre les intervenants)

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Saïd ABID	UO	Méthodes expérimentales appliquées à			24h
		l'environnement			

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED		
OMA8RE09		Réactivité multi Environmental mu			nement		
Semestre	2	Langues de l'ens	eignement	Français	/ English		
Crédits ECTS / Coefficient	: 4	Mise à jour le / U	pdate	31 mars 2			
Valuma hamina tatal	0.415	Downt	СМ	TD	TP		
Volume horaire total	24h	Dont 24h					
Seuil de dédoublement				40 étud	d.		

Prérequis : Chimie (Licence) ; UE du semestre 1 : Chimie de l'atmosphère

Prerequisites: General Chemistry (Bachelor level); UE form semester 1: Atmospheric chemistry Documents and basic knowledge are provided for students who have not followed the 1st semester UE

Objectifs / Objectives: (savoirs et compétences acquis / knowledge and skills acquired)

- Donner des connaissances approfondies sur les réactivités multiphasiques atmosphériques avec les interfaces particulaires (aérosols, nuages) et les surfaces continentales terrestres (eaux et sols) /
- Provide in-depth knowledge of multiphase atmospheric reactivity with particulate interfaces (aerosols, clouds) and continental land surfaces (water and soil);

Contenu /Content :

Réactivité multiphasique et phénomènes aux interfaces appliqués à l'environnement (24h)

- ✓ Description d'un système multiphasique à l'équilibre, spéciation chimique, Application à des systèmes tri phasiques (air eaux sols)
- ✓ Cinétique du transfert de masse phase gazeuse / phases condensées, Cinétique hétérogène et multiphasique, Photo-catalyse hétérogène : Application aux Interfaces air-particules et nuages, air-surface continentale, Croissance et réactivité des aérosols
- ✓ Notion de fractionnement isotopique et transfert de phase et applications : quantification des origines des GES ou des polluants atmosphériques, transport réactifs et dégradation des polluants hydrocarbonés dans les aquifères

Multiphase reactivity and phenomena at interfaces applied to the environment (24h)

- Description of a multiphase system at equilibrium, chemical speciation, Application to three-phase systems (air/soil water)
- Mass transfer kinetics of gas phase / condensed phases, heterogeneous and multiphase kinetics, heterogeneous photo-catalysis: Application to air-particle and cloud interfaces, air-continental surface, Growth and reactivity of aerosols
- Notion of isotopic fractionation and phase transfer and applications: quantification of the origins of GHGs or air pollutants, reactive transport and degradation of hydrocarbon pollutants in aquifers

Modalités de contrôle des connaissances

	С	ONTROLI	E CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE
NON	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
RNE / RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Christophe GUIMBAUD

Bibliographie: Fournie par les intervenants / Provided by teachers

Ressources pédagogiques : Documents photocopiés et/ou en Ligne

Education ressources: Photocopied documents, on line courses (ENT), corrected tutorials and exams

Intervenants et Répartition :										
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP					
Christophe GUIMBAUD	UO	Réactivité multiphasique et phénomènes aux interfaces appliqués à l'environnement / Multiphase reactivity and phenomena at interfaces applied to the environment		24h						

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED				
OMA8VS01 Moteurs & Systèmes de Propulsion (Polytech')									
Semestre	2	Langues de l'e	Langues de l'enseignement Français / Anglais						
Crédits ECTS / Coefficient	9	Mise à jour le		12 mai 2022					
W-1	4001-	Dont	СМ	TD	TP				
Volume horaire total	120h	Dont	68h75	5h	46h25				
Seuil de dédoublement		32 (3gr)	16 (5gr)						

Prérequis : Connaissances en thermodynamique, thermique et mécanique des fluides

Objectifs: (savoirs et compétences acquis)

- > Comprendre les paramètres principaux influençant le fonctionnement d'un moteur à combustion interne.
- > Réaliser une analyse sommaire de la combustion dans un moteur à combustion interne.
- > Réaliser le pré-dimensionnement d'un système propulsif en fonction de son utilisation.

Contenu:

- ✓ Moteurs à combustion interne : Rappel des cycles théoriques, rendement de forme, rendement thermodynamique théorique. Calcul des apports d'énergie dans les phases isochores, isobares, isothermes. Étude de la phase de compression, évaluation des pertes aux parois grâce au cycle LogP/LogV. Calcul de la température de paroi, hypothèses et limites. Calcul du dégagement de chaleur et du taux de dégagement de chaleur net et brut : pertes aux parois et modèles de la littérature, fermeture du bilan énergétique. Modèle de dégagement de chaleur de Vibé, phase de prémélange et phase de diffusion. Ajustement du modèle de Vibé aux données expérimentales. Travaux pratiques sur bancs moteur.
- ✓ Turboréacteur : Principaux organes, architecture, modularité. Calcul approché des performances. Aérodynamique compresseur et turbine. Les systèmes. La certification.

Modalités de contrôle des connaissances

	С	ONTROL	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE		
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT		
1 ^{ère} session								
• RNE	10	Variable	Oral et Ecrit					
• RSE				(Sans objet			
2 ^{ème} session								
• RNE				2h	Ecrit			
• RSE								

Responsable de l'enseignement : Pierre BREQUIGNY

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : polycopiés et documents disponibles sur l'espace numérique de travail

intervenants et ive	partition				
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD*	TP*
		Cf polytech'			

^{*} Seuil du nombre d'étudiants indiqués entre () après la durée

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED				
OMA8VS02		Outils numériques & expérimentaux pour l'ingénieur (Polytech')							
Semestre	2	Langues de l'e	Langues de l'enseignement Français / Anglais						
Crédits ECTS / Coefficient	4	Mise à jour le		12 mai 2022					
Values bassing total	456	Dont	СМ	TD	TP				
Volume horaire total	45h	Dont	16h25		28h75				
Seuil de dédoublement		-			16 etud.				

Préreguis : Connaissances en mathématiques

Objectifs: (savoirs et compétences acquis)

- Résolution des EDP: les phénomènes physiques sont régis, pour la plupart, par des équations aux dérivées partielles (EDP). Ce module a pour objectif de permettre à l'étudiant d'identifier le type d'EDP rencontrée (elliptique, parabolique, hyperbolique), de comprendre ses propriétés mathématiques (caractéristiques) et de mettre en œuvre une méthode de résolution numérique adaptée. Techniquement, on apprend à programmer les algorithmes étudiés en FORTRAN, et on utilise un logiciel libre pour la visualisation (Gnuplot).
- > Acquisition, traitement : acquérir les principes de base de l'acquisition de données et de leur traitement

Contenu:

- ✓ Résolution des EDP: Introduction généralités classification. Equations linéaires, quasi-linéaires, non-linéaires; caractéristiques, classification (elliptique, parabolique, hyperbolique); équations prototypes, problèmes de conditions initiale et aux limites, zones d'influence et de dépendance, solutions analytiques. Méthodes aux différences finies. Discrétisation spatiale et mode numérique extrême, théorème d'échantillonnage (Shannon) et coupure spectrale, repliement de spectre; schémas de dérivation première et seconde, centrés et décentrés, erreur de dérivation, nombre d'onde modifié
 - Schémas en temps. Méthodes par pas, explicites et implicites (Adams-Basforth, Adams-Moulton) ; schémas de Runge-Kutta ; consistance, stabilité, convergence. Théorème de Lax-Richtmyer
 - Discrétisation spatio-temporelle : méthode des lignes. Analyse de stabilité de von Neumann, méthode de l'équation modifiée ; erreur dissipative et dispersive, critères de stabilité convectif (Courant-Friedrisch-Lewy) et visqueux pour les schémas explicites ; schémas d'ordre 2 en espace-temps : Lax-Wendroff, Mac-Cormack.

Notions sur les équations hyperboliques non-linéaires. Equation de Burgers, formation d'un choc ; schémas conservatifs d'ordre 1 (type volumes-finis): Lax-Friedrisch, CIR.

Application machine, programmation FORTRAN, visualisation Gnuplot. Equations paraboliques : résolution de l'équation de la chaleur 1D instationnaire ; équations elliptiques : équation de Laplace en 2D, CL type Dirichlet/Neumann ; équations hyperboliques linéaires : résolution de l'équation des ondes 1D

✓ Acquisition et traitement du signal : Acquisition d'un signal. Filtrage. Influence des paramètres d'acquisition (fréquences...). Utilisation de LabView. Traitement du signal. Transformées de Fourier. Valeurs moyennes et valeurs instantanées.

Modalités de contrôle des connaissances

	С	ONTROL	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE						
	Nb CC	Durée	Nature (oral / écrit)	Durée Nature (oral/écrit)		Répartition en % entre CC et CT						
1ère session												
• RNE	4	Variable	Oral et Ecrit									
• RSE					Sans objet							
2 ^{ème} session												
RNE / RSE				2h	Ecrit							

Ivan FEDIOUN

Responsable de l'enseignement :

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : polycopiés et documents disponibles sur l'espace numérique de travail

PARCOURS:		G³	Geo ² l	nv		CPRI	E	VSE	D	
OMA8RE	06		Stage / 6 sem	aines min	imun	า				
Semestre		2	Langues de l'e	nseigneme	ent	Franç	ais			
Crédits ECTS / Coeffic	cient	10	Mise à jour le			12 ma	ai 2022			
Volume horaire total		10h	Dont	CM			TD	1	ГР	
Volume noralle total		1011	Dont				10h			
Seuil de dédoublemer	nt					1	étud.			
Descriptif de l'en	seigne	ement								
Prérequis :										
Objectifs : (savoirs et co	mpétenc	es acquis	3)							
Contenu: Stage obligatoire de 6 semaines au minimum, en France ou à l'étranger, dans une entreprise (industries, laboratoires, bureaux d'études ou de conseils, administrations, collectivités territoriales,) ou bien dans des laboratoires de recherche public (université, CNRS). Ce stage consiste en la réalisation d'une mission définie par un responsable de l'entreprise et un enseignant du master. C'est une première découverte du monde du travail dont l'objectif est de mettre en pratique les connaissances acquises lors de la formation. Les stages font l'objet d'une convention d'accueil et doivent obligatoirement être rémunérés Le stage donne lieu à un rapport écrit et une soutenance orale. Evaluation : écrit, oral, évaluation de l'encadrant.										
Modalités de con				Evaluation	. 00111,	oral, o	valaation	40 1011044	i di it.	
	C	ONTRO	LE CONTINU	CONTR	OLE T	ERMIN	IAL C	ONTROLE	MIXTE	
	Nb CC	Durée	Nature (oral / écrit)	Durée		Nature ral/écrit		Répartition entre CC		
1 ^{ère} session		-0	,	-	Ì		' 			
• RNE / RSE			Rapport + Oral							
• RSE										
2 ^{ème} session										
RNE / RSE				Sans ob	jet					
Responsable de l	l'ensei	gnem	ent : Stéphar	nie DE P	ERS	IS - (Gisèle	TONG		
Bibliographie :										
Ressources pédagogi	ques :									
Intervenants et R	éparti	tion								
Nom-Prénom	Orga	nisme	Contenu pédago	jique de l'ii	nterver	nant	CM	TD	TP	
Stéphanie DE PERSIS	UO-0	CoST	Parco	urs CPRE						
Gisèle TONG	UO-C	SUC	Parco	urs CPRE						

Parcours VSED

Christian CAILLOL

Polytech

Semestre 3

CODE APOGEE	C	OMA9RE01			OMA9RE02			OMA9RE04		
INTITULE	Aspects fondamentaux de la combustion & Formation des polluants			Physique & dynamique de l'atmosphère			Modélisation chimique de la combustion			
RESPONSABLE	Zeyr	nep SERIN	IYEL	Lin	e JOURD	AIN	Saïd ABID			
VOLUME HORAIRE		48h		24h			24h			
DEDARTITION HORAIDE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HORAIRE		48h			24h			4h	20h	
ECTS	5			3			2			
COMMUN										

CODE APOGEE	OMA9RE05			OMA6RE06			OMA9RE07			
INTITULE	Risques industriels			Pollution atmosphérique - Qualité de l'air			Déchets & Analyses du cycle de vie			
RESPONSABLE	Guil	laume DA`	YMA	Christo	Christophe GUIMBAUD			Guillaume DAYMA		
VOLUME HORAIRE		36h		24h			24h			
DEDARTITION LIONAIDE	СМ	TP	TD	СМ	TP	TD	СМ	TD	TP	
REPARTITION HORAIRE			20h		24h		8h	16h		
ECTS	3						2			
COMMUN										

CODE APOGEE	(OMA9RE08				OMA9RE15			OMA9RE10		
INTITULE	Polluti des e		traite & des		Approche projet & Insertion professionnelle			Management & législation de l'environnement			
RESPONSABLE	Va	léry C	ATOII	RE	Clémence AGRAPART			Val	éry CATO	IRE	
VOLUME HORAIRE		48	3h		24h			24h			
REPARTITION HORAIRE	СМ	Т	D	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HURAIRE		48h			24h			24h			
ECTS		5	5 4		2			2			
COMMUN											

CODE APOGEE	OMA9RE11			C	MA9RE1	2	OMA9VS01			
INTITULE	Explosion du gaz			Proj	et – Polyt	ech'	Turbulence / CFD Polytech'			
RESPONSABLE	Isabelle SOCHET			Chris	stian CAIL	.LOL	Ivan FEDIOUN			
VOLUME HORAIRE		24h						60h		
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HURAIRE	8h	16h			5h	25h	30h	10h	30h	
ECTS		3			1		7			
COMMUN										

CODE APOGEE	OMA9VS02			(DMA9VS0	3	OMA9VS04			
INTITULE	Combustion & application – Polytech'			Dyna	mique de	s Gaz	Moteurs			
RESPONSABLE	Fabien HALTER			Azed	ddine KOU	IRTA	Pascal HIGELIN			
VOLUME HORAIRE		70h		70h				70h		
REPARTITION HORAIRE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HURAIRE	30h	10h	30h	20h	37h50	32h50		22h50	42H50	
ECTS		7			7			7		
COMMUN										

CODE APOGEE	C	OMA9VS0	5	С	MA9VS0	6	OMA9VS07			
INTITULE	Contrôle moteur & Véhicule hybride				es énerg Polytech		Aéroacoustique & Aéroélasticité			
RESPONSABLE	Gui	llaume CC	LIN	Car	nille HESI	PEL	Philippe DEVINANT			
VOLUME HORAIRE		70h			70h		70h			
DEDARTITION LIORAIDE	СМ	TD	TP	СМ	TD	TP	СМ	TD	TP	
REPARTITION HORAIRE		20h	50h	43h75 20h 6h25			37h30 32h30			
ECTS	7			7			7			
COMMUN										

PARCOURS:	G³	Geo²l	Env		CPRE		VSED		
OMA9RE01		Aspects Fondamentaux de la Combustion & Formation des Polluants Fundamental aspects of combustion & pollutant formation							
Semestre	3	Langue de l'en	seignemei	nt	Français				
Crédits ECTS / Coefficient	5	Mise à jour le			12 mai 20)22			
Valuma haraira tatal	40h	Dont	СМ		TD		TP		
Volume horaire total	48h	Dont			48h				
Seuil de dédoublement	- i	-			40 étu	ıd.			

Prérequis : Connaissances de base de chimie physique

Objectifs: (savoirs et compétences acquis)

- > Acquérir des notions de modélisation cinétique en combustion
- > Comprendre les principales caractéristiques des systèmes combustibles
- > Comprendre les voies de formation de différents polluants

Contenu:

- ✓ Généralités sur la modélisation cinétique en combustion.
- √ Schémas cinétiques globaux et modèles détaillés
- ✓ Explosion en phase gazeuse, déflagration, structure de flamme
- ✓ Cinétique chimique d'auto-inflammation
- ✓ Stabilisation de flamme Flammes de pré-mélange Flammes non-prémélangées
- ✓ Mécanismes de formation des polluants primaires de la combustion
- ✓ Cinétique chimique d'oxydation des combustibles conventionnels et formation des polluants

Modalités de contrôle des connaissances

	С	ONTROL	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session		(orar / ecrit)				
• RNE	2	2h	Ecrit			
• RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Zeynep SERINYEL

Bibliographie:

Ressources pédagogiques : Documents photocopiés, cours en ligne (ENT), TD corrigés

Intervenants et Répartition TP Nom-Prénom **Organisme** Contenu pédagogique de l'intervenant CM TD Modélisation cinétique en combustion -Guillaume DAYMA UO 8h Mécanismes cinétiques détaillés Caractéristiques des systèmes combustibles : UO Stéphanie DE PERSIS 6h inflammation et auto-inflammation Combustion dans les systèmes énergétiques et Zeynep SERINYEL UO 14h pollution - chimie de l'auto-inflammation Fabien HALTER UO Dynamique des flammes 8h Andrea COMANDINI **CNRS** Formation des suies & autres particules 8h Guillaume LEGROS UO Flammes non-prémélangées 4h

PARCOURS:		G³		Geo ² E	≣nv		CPRE		VSED		
OMA9RE					Physique et dynamique de l'atmosphère Basics of atmospheric physics and dynamics						
Semestre		3	Langu	ıes de l'eı	nseigner	ment	Français	/ Ang	lais		
Crédits ECTS / Coeffic	ient	3	Mise à	à jour le			20 avril 2	2022			
Valuma haraira tatal		246	Dont		CI	M	TD		TP		
Volume horaire total		24h	Dont 24h								
Seuil de dédoublement	t				40 étud.						

Prérequis : Thermodynamique générale et notions de mécanique des fluides (niveau licence)

Objectifs : (savoirs et compétences acquis)

- Fournir les connaissances de bases en thermodynamique, rayonnement et dynamique de l'atmosphère.
- > Application à la circulation générale de l'atmosphère et à l'étude de la couche de surface atmosphérique

Contenu:

- ✓ Bilan radiatif global du système Terre-Atmosphère
- ✓ Thermodynamique de l'air atmosphérique (air humide, transformations isobares et adiabatiques, stabilité de l'atmosphère, formation des nuages)
- ✓ Dynamique du fluide atmosphérique (équation du mouvement, échelle synoptique, approximations hydrostatique et géostrophique, vent thermique)
- ✓ Application à la circulation générale de l'atmosphère (ZCIT, cellules de Hadley, alizés, dépressions, anticyclones, jets)
- ✓ Physique et thermodynamique de la couche surface atmosphérique (micro-météorologie, échange radiatif, de chaleur, et de matière). Exploitation de données terrains (tour à Flux à Eddy Corrélation turbulente appliquée à la validation de données d'échange de gaz à effet de serre.

Radiative budget of the Earth-Atmosphere system / Thermodynamics of atmospheric air (moist air, isobaric and adiabatic transformations, stability of the atmosphere, clouds formation) / Dynamics of the atmosphere (momentum equations, synoptic scale, hydrostatic and geostrophic approximations, thermal wind) / Application to the large-scale circulation of the atmosphere (ZCIT, Hadley cells, trade winds, monsoon, cyclones, jets) / Physics and thermodynamics of atmospheric surface layer (Micrometeorology, radiative, heat and matter transfers at the soil – atmosphere interface). Field data analysis from Eddy covariance flux tower with à focus on greenhouse gas exchange

Modalités de contrôle des connaissances

	C	ONTROLI	E CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	vrée Nature (oral / écrit)		Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session				-		
RNE / RSE				2h	Ecrit	
2 ^{ème} session	<u>'</u>					
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement :

Line JOURDAIN

Bibliographie: La météorologie par Triplet et Roche édition météorologie générale.

Physique et Chimie de l'atmosphère V.H Peuch, G. Mégie, R. Delmas, Editions Belin

Ressources pédagogiques : Transparents du cours en version numérique

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Line JOURDAIN	UO	Physique de l'atmosphère à l'échelle globale		18h	
Christophe GUIMBAUD	UO	Physique de la couche de surface atmosphérique		6h	

PARCOURS:		G³		Geo ² E	Env		CPRE		VSED		
OMA9RE	04		Modélisation chimique of				la combustion				
Semestre	3 Langues de l'enseigneme			Langues de l'enseignement Français / Anglais					lais		
Crédits ECTS / Coeffic	ient	2	Mise à	à jour le			23 mai 2	022			
Malaura banaha 4a4al		0.41-	D 4		CI	VI	TD		TP		
Volume horaire total		24h	Dont		4h 20h				20h		
Seuil de dédoublement	t						40 étu	ıd.	15 étud.		
				-			-		-		

Prérequis : Bases de thermochimie, chimie de la combustion

Objectifs: (savoirs et compétences acquis)

Donner un aperçu des méthodes numériques utilisées dans la modélisation de la chimie de la combustion

Contenu:

✓ Introduction à la modélisation en combustion – Cinétique chimique

4h TD

✓ Informatique appliquée à la chimie de la combustion

20h TP

✓ Calculs de données thermodynamiques, paramètres de détonation, modélisation cinétique chimique en combustion : applications aux flammes et aux réacteurs

Modalités de contrôle des connaissances

	C	ONTROL	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE			Rapport TP			
• RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Saïd ABID

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Zeynep SERINYEL	UO	Modélisation chimique de la combustion		2h	10h
Guillaume DAYMA	UO	Modélisation chimique de la combustion		2h	10h

PARCOURS:	G G	3		Geo ² E	nv		CPRE		VSED		
OMA9RE	05			ques Industriels ustrial risk assessment							
Semestre		4	Langues de l'enseigneme								
Crédits ECTS / Coeffic	ient	4	Mise à	jour le			1 ^{er} avril 2	1 ^{er} avril 2022			
Values bansing total		20h	Dant		CI	VI	TD		TP		
Volume horaire total		36h	Dont		20h 16h						
Seuil de dédoublemen	t						40 étud. 20 étud.				
				-			-		-		

Prérequis : Connaissances de base de chimie physique

Objectifs: (savoirs et compétences acquis)

- ➤ Notions d'analyse et de gestion des risques industriels
- > Connaitre les différents risques industriels
- Mise en place des plans d'urgence et domaines d'application

Contenu:

- ✓ Analyse et lutte en matière de sécurité industrielle
- ✓ Risques dus aux rayonnements et aux radioéléments
- √ Transport de matières dangereuses
- ✓ Plans d'intervention

Modalités de contrôle des connaissances

	С	ONTROLI	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE	3	1h	Ecrit			
• RSE				2h	Ecrit	
2 ^{ème} session						
RNE / RSE				2h	Ecrit	

Responsable de l'enseignement : Guillaume DAYMA

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Yasmina SIDIBE BEN SAHRA	ASN	Radioprotection - Risque radioactif		8h	
Vacataire du milieu professionnel	SDIS45	Plans d'urgence – Transport de matières dangereuses – Sécurité incendie		9h	
Vacataire du milieu professionnel	ASN	Règlementation installations nucléaires		1h50	
Vacataire du milieu professionnel	EDF	Chantier de déconstruction des réacteurs nucléaires		1h50	
Guillaume DAYMA	UO	Visites installations industrielles			16h

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED
OMA9RE06 Pollution atmosphérique, qualité de l'air Atmospheric pollution and air quality					
Semestre	3	Langue Français / Anglais			
Crédits ECTS / Coefficient	3	Mise à jour le 1er avril 2022			
Valuma hansina tatal	24h	Dont	СМ	TD	TP
Volume horaire total 2		Dont		24h	
Seuil de dédoublement		40 étud.			

Prérequis :

Objectifs : (savoirs et compétences acquis)

➤ Comprendre les principaux processus chimiques et dynamiques de formation et de transport des polluants atmosphériques liés aux activités humaines. Connaître les moyens de surveillance et de contrôle de la qualité de l'air, et la législation en vigueur, ainsi qu'étudier les moyens de remédiation de la pollution

Contenu:

- ✓ Techniques de prélèvements et d'analyse des gaz et des particules atmosphériques : du réseau de mesure de la qualité de l'air aux besoins pointues de la recherche (6h)
- ✓ Contrôle et réduction de la pollution atmosphérique (procédés de traitement, réglementations, réseaux de surveillance...) : Lig'air (2h)
- ✓ Aspect législatif et sanitaire ; ICARE -CNRS; suivi de la réactivité atmosphérique (2h)
- ✓ Eurofins Environnements (2h) : législation des fumées industrielles
- ✓ ADEME : Pollution d'Air intérieure (4h)
- ✓ Grands cycles biogéochimiques et pollution anthropiques : changements globaux (climat, pollution) et risques environnementaux, boucles de rétroaction (4h)
- ✓ Processus de transport et diffusion des polluants dans les panaches (4h)

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE	
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT	
1 ^{ère} session							
RNE / RSE				2h	Ecrit		
2 ^{ème} session							
RNE / RSE				2h	Ecrit		

Responsable de l'enseignement : Christophe GUIMBAUD

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Intervenants et Répartition							
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP		
Christophe GUIMBAUD	UO	Techniques de prélèvements & d'analyse des gaz et des particules atmosphériques		6h			
Christophe GUIMBAUD	UO	Changements globaux (pollution, climat) & risques environnementaux, boucles de rétroaction		4h			
Nathalie HURET		Processus de transport et diffusion des polluants dans les panaches		4h			
Nathalie POISSON	ADEME	Qualité de l'air en France : Enjeux Règlementations & surveillance ; Air intérieure		4h			
Patrick MERCIER	LIG'AIR	Surveillance de la qualité de l'air en Région Centre		2h			
Laurent VASSE	Eurofins env.	Réglementation émissions industrielles		2h			
Véronique DAËLE	ICARE	Etude de la pollution atmosphérique		2h			

PARCOURS:	G ³		Geo²Env		CPRE		VSED
OMA9RE	s & Analyse d & <i>life cycle anal</i>		e de vie				
Semestre	3	Langue	Langues de l'enseignement Français / Anglais				ais
Crédits ECTS / Coeffic	ient 2	Mise à j	Mise à jour le 1er avril 2022				
Values banaina tatal	245	Dont	С	М	TD		TP
Volume horaire total	24h	Dont	Dont		24h		
Seuil de dédoublemen	<u> </u>			40 étu	d.		
			"				

Prérequis : Connaissances de base de chimie physique

Objectifs: (savoirs et compétences acquis)

- Notions de déchet (conventionnel, nucléaire)
- > Connaitre les filières de traitement et de valorisation de déchets

Contenu:

- ✓ Règlementation liée aux déchets et résidus industriels
- ✓ Classification des déchets nucléaires
- ✓ Stockage des déchets industriels et des déchets nucléaires

Modalités de contrôle des connaissances

	C	ONTROL	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE			
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT			
1 ^{ère} session									
• RNE	2	1h	Ecrit						
• RSE				2h	Ecrit				
2 ^{ème} session									
RNE / RSE				2h	Ecrit				

Responsable de l'enseignement : Guillaume DAYMA – Dominique GUYONNET

Ressources pédagogiques : Documents photocopiés, cours en ligne (ENT), TD corrigés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Solène TOUZE	BRGM			4h	
Faustine LAURENT	BRGM			4h	
Charles COUSIN	BRGM			4h	
Nourredine MENAD	BRGM			4h	
Richard DANIELLOU	UO	Valorisation de la biomasse		6h	
Christophe ALLEGRIS	STCM	Filière de traitement des batteries & recyclage du plomb		2h	

PARCOURS:	G³	Geo	² Env	CPRE	VSED		
OMA9RE08		Pollution &	Pollution & traitements des eaux & des sols				
Semestre	3	Langues de l'enseignement Français					
Crédits ECTS / Coefficient	5 Géo ² Env 4 CPRE	Mise à jour le	•	12 mai 20	12 mai 2022		
Malaura la austria 4.44al	401-	D	СМ	TD	TP		
Volume horaire total	48h	Dont		48h			
Seuil de dédoublement	<u>.</u>	-		40 étu	ıd.		

Prérequis : Connaissances de base des milieux aquatiques et éléments de pédologie

Objectifs : (savoirs et compétences acquis)

> Donner des connaissances approfondies sur les pollutions des milieux aquatiques et des sols, sur les traitements en vue de la potabilisation des eaux et après usage, et en vue de la réhabilitation des sols pollués

Contenu:

- ✓ Pollutions et traitements des eaux :
- ✓ Rappels sur les eaux souterraines ; Les principales causes de pollution et problématiques actuelles ; Norme de qualité des eaux naturelles ; Production d'eau potable ; norme européenne ; Traitements des eaux usées.
- ✓ Pollutions et traitements des sols :
- ✓ Comportement des polluants ; Diagnostic des sols pollués ; Evaluation simplifiée des risques ; évaluation détaillée des risques ; Gestion des sites & sols pollués Méthodologie ; Prélèvement et échantillonnage ; Techniques de dépollution des sols : méthodes des traitements, limites et problématique des techniques, études de cas ; Techniques de réhabilitation. Marché des traitements des sites pollués.
- ✓ Aspects réglementaires de la pollution et la dépollution

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE	2	1h30	Ecrit			
• RSE				3h	Ecrit	
2 ^{ème} session						
RNE / RSE				3h	Ecrit	

Responsable de l'enseignement : Valéry CATOIRE

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Intervenants et Répartition							
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP		
Valéry CATOIRE	UO	Pollution & Traitement Eaux		8h			
Mickael MOTELICA	UO	Pollution & Traitement Eaux		10h			
J.Baptiste CHATELAIN	Agence de l'Eau	Pollution & Traitement Eaux		3h			
Pauline BALON	BRGM	Gestion des sites et sols pollués		2h			
Clément ZORNIG	BRGM	Gestion des sites et sols pollués		3h45			
Stéfan COLOMBANO	BRGM	Gestion des sites et sols pollués		7h15			
Patrick SUIRE	ANTEA	Gestion des sites et sols pollués		10h			
Stéphane SABATIER	IDDEA	Gestion des sites et sols pollués		4h			

PARCOURS:	G³		Geo²Env		CPRE		VSED
OMA9RE09	oche projet et et approach an						
Semestre	3	Langues de l'enseignement Français / Anglais				lais	
Crédits ECTS / Coefficient	2	Mise à jour le 29 mars 2022					
Maluma hamaina tatal	0.415	Dant		СМ	TD		TP
Volume horaire total	24h	Dont		24h			
Seuil de dédoublement				40 étu	ıd.		

Prérequis :

Objectifs : (savoirs et compétences acquis)

Insertion professionnelle.

Gestion de projet : Avoir une vue globale et synthétique sur le mode projet et ses utilisations ; Connaître les bases de la méthodologie de projet ; S'approprier les outils de base de la conduite de projet.

Contenu:

EC1 - Approche projet et qualité : 12h

La conduite de projets est une compétence transversale recherchée dans les entreprises quel que soit le poste, pour mettre en œuvre et atteindre les objectifs fixés.

Contenu du programme :

- ✓ Définition (gestion de projet/ initiation à l'assurance produit)
- ✓ Méthodologie et outils (gestion de planning, documentation, risques)
- ✓ Bonnes pratiques de travail dans une équipe "projet"

EC2 - Outils pour l'insertion professionnelle proposés en partenariat avec l'ESEE : 4x3h

✓ Rédiger une lettre de motivation ou comment montrer son intérêt pour une entreprise, un poste ou une mission ; Réussir son entretien de recrutement ; Cibler son marché de l'emploi ; Construire et développer son réseau

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT
1 ^{ère} session						
• RNE	1	1h	Ecrit			
• RSE				1h	Ecrit	
2 ^{ème} session						
RNE / RSE				1h	Ecrit	

Responsable de l'enseignement : Clémence AGRAPART

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Clémence AGRAPART	CNRS	Approche projet et qualité		12h	
ESEE	UO			12h	

PARCOURS:	G³)MAOST07	Geo²Env		CPRE		VSED
OMA9RE10	nent & législat ST07 selon parco		l'environr	neme	nt		
Semestre	3	Langues de l'enseignement			Français ou Anglais		
Crédits ECTS / Coefficient	2	Mise à jo	ur le		24 avril 2022		
Values baraire total	0.415	Dant	С	М	TD		TP
Volume horaire total	24h	Dont			24h		
Seuil de dédoublement					40 étu	ıd.	

Prérequis :

Objectifs: (savoirs et compétences acquis)

- ➤ Législation de l'environnement et des données : Comprendre la structuration du droit européen et français de l'environnement et des données, l'organisation des compétences.
- > Management de l'environnement : Comprendre les enjeux d'un Système de Management Environnemental / Savoir appliquer les exigences de l'ISO 14001.

Contenu:

Droit de l'Environnement / Droit des données

- ✓ Rapide historique du droit en environnement : Les grandes dates du droit français, européen et international, les éléments de la charte de l'environnement : introduction aux grands principes de l'environnement et du développement durable
- ✓ L'organisation des compétences environnementales en France : Rappel historique, Rôles et organisations de l'Etat, de ses Etablissements Publics, des collectivités territoriales, des autres acteurs...
- ✓ La structuration du droit français et européen : Hiérarchie des textes, Notion de doctrine-jurisprudence, L'accès au droit sur Internet, essai d'accès sur un exemple
- ✓ Le droit des données : Notion de propriété intellectuelle, L'accès aux informations environnementales, La réutilisation des informations publiques, La directive Inspire

Management environnemental, normes, études de cas L'ISO 14001 version 2015 :

- ✓ Les enjeux d'un Système de Management de l'Environnement
- ✓ Décryptage des exigences
- √ Détecter les points critiques de la norme
- ✓ Lien avec les autres normes de management (Qualité/Sécurité)
- ✓ Etude de cas

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE			
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT			
1ère session									
RNE / RSE				1h30	Ecrit				
2 ^{ème} session									
RNE / RSE				1h30	Ecrit				

Responsable de l'enseignement : Valéry CATOIRE

Intervenants et Répartition								
Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP			
Gabrielle DAVAIN-GATTEAU	VALESTIA	Management de l'Environnement		24h				

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED	
OMA9RE11 Explosion de gaz - RAI						
Semestre	3	Langues de l'enseignement Français				
Crédits ECTS / Coefficient	3	Mise à jour le	Mise à jour le 9 avril 2022			
Values haveing total	0.415	Dont	СМ	TD	TP	
Volume horaire total	24h	Dont	8h	16h		
Seuil de dédoublement		87 étud.	40 étud.			

Prérequis : Connaissance en combustion et mécanique des fluides

Objectifs: (savoirs et compétences acquis)

> Donner des connaissances approfondies sur les différents types d'explosion pouvant survenir en milieu industriel et être capable de calculer les effets de ces explosions.

Contenu:

- ✓ Déflagration : mécanisme de propagation, vitesse de flamme laminaire, notions sur les instabilités, déflagration en espace libre et confiné.
- ✓ Détonation : théorie de Chapman Jouguet, théorie de Zel'dovich-vonNeuman-Döring, structure tridimensionnelle de l'onde de détonation, domaine de détonation
- ✓ Explosion de nuage de gaz : concept de l'équivalent TNT, méthodes multi-énergie et Baker-Strehlow Flash Fire
 Bleves

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE		
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT		
1 ^{ère} session								
RNE / RSE				2h	Ecrit			
2 ^{ème} session								
RNE / RSE					Rapport			

Responsable de l'enseignement : Isabelle SOCHET

Bibliographie: Fournie par les intervenants

Ressources pédagogiques : Documents photocopiés

Nom-Prénom	Organisme	Contenu pédagogique de l'intervenant	СМ	TD	TP
Isabelle SOCHET	INSA CVL	Explosion de gaz	8h	16h	

PARCOURS:		G³	Geo ² E	Env [CPRE		VSED
OMA9RE	E12		Projet (Polyte	ch')				
Semestre		3	Langues de l'ei	nseigneme	ent	Français		
Crédits ECTS / Coeffic	cient	1	Mise à jour le			12 mai 202	22	
Volume horaire total			Dont	СМ		TD		TP
Seuil de dédoubleme	nt							
Descriptif de l'en	seigne	ement						
Prérequis : Avoir suivi			sation					
Objectifs : (savoirs et co				pécialisatior	า			
Contenu : ✓ Etude de cas ✓ Recherche bibliogra ✓ Rédaction d'une not		hèse						
Modalités de con	trôle d	les con	naissances					
	С	ONTROL	E CONTINU	CONTR	OLE	TERMINAL CONTROLE MIX		
	Nb CC	Durée	Nature (oral / écrit)	Durée		Nature oral/écrit)		partition en % ntre CC et CT
1 ^{ère} session	li .	1						
• RNE	2	Variable	Oral et Ecrit					
• RSE					Sans o	bjet		
2 ^{ème} session								
• RNE				1h		Ecrit		
• RSE								
Responsable de	l'ensei	gneme	nt :	Christia	n C	AILLOL		

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED	
OMA9VS01	CFD avancée	(Polytech')				
Semestre	3	Langues de l'e	nseignement	Français / Anglais		
Crédits ECTS / Coefficient	7	Mise à jour le 12 mai 2022				
Valuma hamaina tatal	60h	Dont	СМ	TD	TP	
Volume horaire total			5h	25h	30h	

Prérequis : Connaissances et dynamique des fluides et méthodes numériques

Objectifs: (savoirs et compétences acquis)

- > Décrire, comprendre et analyser les phénomènes présents dans les écoulements turbulents
- Maîtriser les outils de traitement et d'analyse des résultats expérimentaux ou numériques.
- ➤ Choisir un niveau de description/modélisation en simulation numérique (ILES, LES, DES, RANS) selon les besoins et les moyens à disposition.
- ➤ Utiliser le logiciel de CFD ANSYS Fluent pour la simulation RANS des écoulements turbulents

Contenu:

- 1. Description physique et analyse statistique de la turbulence :
 - ✓ Outils statistiques : variables aléatoires, moments statistiques, corrélations en 1 point ou 2 points, moyenne stochastique, théorèmes généraux
 - ✓ Physique de la turbulence: échelles eulériennes spatiales et temporelles, échelles de Kolmogorov, hypothèse de Taylor, turbulence homogène et isotrope, spectres, dynamique des corrélations doubles, loi inertielle (théorie K41)
 - ✓ Approche expérimentale : démonstration pratique des techniques de mesure en écoulement non-réactif (fil chaud, LDV, PIV)
 - ✓ Traitement du signal et de l'image : moyennes temporelles et spatiales, transformées de Fourier, corrélations temporelles ou spatiales, densités spectrales de puissance. Mise en pratique : traitement du signal LDV, fil chaud (3h45 TP), traitement d'images PIV
- 2. Modélisation opérationnelle : fermetures en 1 point (RANS) :
 - ✓ Rappels et compléments : formalisme de Reynolds, équations statistiques en fluide incompressible, problème de fermeture.
 - ✓ Formalisme RANS en fluide compressible : moyenne de Favre, hypothèse de Morkovin
 - ✓ Fermeture newtonienne : modèles à 1 (Spalart-Allmaras), et 2 (k-□, k-□) équations, lois de parois
- 3. Simulation des grandes échelles
 - ✓ Filtrage et modélisation sous-maille explicite : espace physique et espace spectral, moments centrés généralisés, modèles à viscosité turbulente (Smagorinsky, fonction de structure), par similarité d'échelle (Bardina), identité de Germano, modèles dynamiques (Germano-Lilly)
 - ✓ Simulation des grandes échelles implicite : filtre implicite d'un schéma numérique, fonction de transfert, schémas dissipatifs et dispersifs, applications
- 4. Applications CFD sur ANSYS Fluent
- 5. Conférences par des intervenants extérieurs

Modalités de contrôle des connaissances

	CONTROLE CONTINU			CONTR	OLE TERMINAL	CONTROLE MIXTE			
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT			
1ère session									
• RNE	6	Variable	Oral et Ecrit						
• RSE				;	Sans objet				
2 ^{ème} session									
RNE / RSE									

Responsable de l'enseignement : Ivan FEDIOUN

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED	
OMA9VS02		Combustion & applications (Polytech')				
Semestre	3	Langues de l'e	nseignement	Français / Anglais		
Crédits ECTS / Coefficient	7	Mise à jour le		12 mai 2022		
Malanaa kansina 4a4al	70h	David.	СМ	TD	TP	
Volume horaire total		Dont	30h	10h	30h	
Seuil de dédoublement			32 (2gr)	16 (3gr)		

Prérequis : Connaissances en thermodynamique, thermique, combustion, dynamique des fluides, méthodes numériques et traitement du signal

Objectifs: (savoirs et compétences acquis)

- > Acquérir les bases nécessaires à la description, la compréhension et l'analyse des phénomènes de combustion turbulents mis en jeu dans les applications industrielles.
- > Connaître les mécanismes de base régissant la formation et la réduction des émissions polluantes.
- ➤ Identifier les paramètres influant sur le dégagement de chaleur et la formation des polluants principaux (suies, NOx) pour des applications telles que les moteurs à combustion interne, les centrales de production d'énergie (charbon, gaz, biocarburants) et les turbomachines. Savoir comment faire varier les paramètres pour optimiser le fonctionnement d'un système énergétique.
- > Utiliser un logiciel de CFD pour simuler un système complexe.
- > Acquérir une vue d'ensemble des outils permettant de caractériser un écoulement turbulent, réactif ou non (moyens de mesure et de post-traitement).

Contenu:

- ✓ Chimie de la combustion (thermodynamique appliquée à la chimie, cinétique chimique)
- √ Auto-inflammation (théorie, méthodes de mesure, exemples de modélisation détaillée)
- ✓ Flammes de prémélange (limite d'inflammabilité, stabilisation des flammes, paramètres d'extinction, vitesse de propagation, épaisseur de flamme ...)
- √ Flammes de diffusion
- ✓ Combustion de matériaux énergétiques et explosifs
- ✓ Formation des polluants et systèmes de post-traitement
- ✓ Interactions flammes/turbulence
- √ Modèles de combustion turbulente pour les flammes de prémélange et de diffusion
- √ Phénomènes de combustion et de formation des polluants avec des technologies récentes
- ✓ Présentation d'outils permettant de caractériser un écoulement turbulent, réactif ou non (illustration en TP)
- ✓ Traitement du signal et traitement d'image (utilisation de l'outil numérique Matlab)
- ✓ Initiation au logiciel CHEMKIN (cinétique chimique)
- √ Mise en application des notions abordées au moyen de codes de calcul 3D (FLUENT et FIRE).

De nombreuses conférences faisant intervenir des acteurs du milieu industriel et de la recherche seront organisées sur les différents thèmes.

Modalités de contrôle des connaissances **CONTROLE CONTINU CONTROLE MIXTE CONTROLE TERMINAL** Répartition en % Nature **Nature** Nb CC Durée Durée entre CC et CT (oral / écrit) (oral/écrit) 1ère session **RNE** 6 Variable Oral et Ecrit Sans objet **RSE** 2ème session RNE / RSE 2h Ecrit Responsable de l'enseignement : **Fabien HALTER**

PARCOURS:	G³	Geo ² l	Env	CPRE	VSED		
OMA9VS03	Dynamique de	Dynamique des Gaz (Polytech')					
Semestre	3	Langues de l'e	nseignement	Français / A	Français / Anglais		
Crédits ECTS / Coefficient	7	Mise à jour le		12 mai 2022	12 mai 2022		
Valares Is a reins 4-4-1		Dont	СМ	TD	TP		
Volume horaire total	70h		25h	25h	20h		
Seuil de dédoublement							

Prérequis: Connaissances en thermodynamique, dynamique des fluides, méthodes numériques

Objectifs: (savoirs et compétences acquis)

- Acquérir les connaissances nécessaires pour calculer, analyser et caractériser les phénomènes physiques présents dans les écoulements compressibles, du haut subsonique à l'hypersonique.
- ➤ Maîtriser les outils numériques pour prédire ces écoulements et comprendre comment les propriétés mathématiques (hyperbolicité, caractéristiques) des équations d'Euler interviennent dans les schémas numériques à capture de choc (FVS, FDS). Revue des principaux schémas. Initiation à la programmation FORTRAN.

Contenu:

- ✓ Dynamique des écoulements à grande vitesse : Rappels : thermodynamique, le système Euler, le choc droit Ecoulements 1D instationnaires : caractéristiques, invariants de Riemann, le tube à choc
 - Ecoulements 2D stationnaires : choc oblique, intersection de chocs, disque de Mach. Eventail de détente, relation de Prandtl-Mayer, théorie linéarisée, caractéristiques, problème de Cauchy
 - Hypersonique « froid » : couche entropique, interaction visqueuse, similitude
- ✓ Méthodes numériques pour les équations d'Euler : Equations de conservation scalaires hyperboliques : caractéristiques, problème de Riemann Solutions faibles et condition de Rankine-Hugoniot. Solutions entropiques
 - Rappels sur le système Euler 1D : variables conservatives, primitives, caractéristiques, matrices de passage, invariants de Riemann
 - Schéma conservatif, Schémas volumes-finis « upwind » d'ordre 1 à décomposition de flux (FVS) et solveurs de Riemann approchés (FDS).
 - Extension à l'ordre 2 : approche MUSCL, schémas TVD et limiteurs de flux
- ✓ Applications machine en FORTRAN : Convection linéaire : programmation, gestion des conditions aux limites Equation de Burgers : problème de Riemann avec conditions initiales compressives ou expansives Programmation des schémas Lax-Friedrichs et CIR avec pas de temps constant
 - Application au problème du tube à choc de Sod avec conditions aux limites fixes. Gestion des conditions aux limites : sortie libre non-réflective, frontières fermées réflectives, conditions mixtes
- ✓ Programmation du schéma de Roe avec correction entropique de Harten, pas de temps adaptatif à CFL constant et conditions aux limites quelconques.

Modalités de contrôle des connaissances CONTROLE CONTINU **CONTROLE TERMINAL** CONTROLE MIXTE Nature **Nature** Répartition en % Nb CC Durée Durée entre CC et CT (oral / écrit) (oral/écrit) 1ère session Variable **RNE** 4 Oral et Ecrit **RSE** Sans objet 2ème session 2h RNE / RSE Ecrit

Responsable de l'enseignement : Azeddine KOURTA

PARCOURS:	G³	Geo ² l	Env 📗	CPRE	VSED	
OMA9VS04		tech')				
Semestre	3	Langues de l'e	nseignement	Français / Anglais		
Crédits ECTS / Coefficient	7	Mise à jour le		12 mai 2022		
V-l		Dont	СМ	TD	TP	
Volume horaire total	70h		22h50	42h50		
Seuil de dédoublement						

Prérequis: thermodynamique, combustion, systèmes de propulsion

Objectifs: (savoirs et compétences acquis)

- Comprendre les processus physiques et chimiques se déroulant lors de la combustion et du transvasement dans les moteurs à combustion interne. Comprendre la réaction d'un moteur donné lors du changement de l'un de ses paramètres à l'aide de la modélisation.
- ➤ Bâtir un modèle de moteur à combustion interne. Optimiser le dimensionnement et les réglages d'un moteur sous contrainte de rendement, puissance, émissions polluantes à l'aide d'un modèle de moteur

Contenu:

- ✓ Combustion : thermochimie et cinétique appliquée à la combustion. L'autoinflammation. Flammes de prémélange, limite d'inflammabilité, stabilisation des flammes, paramètres d'extinction, combustion turbulente. Flammes de diffusion. Combustion diphasique. Aérodynamique interne d'un moteur. Notions de préparation du mélange, définition des besoins en allumage par étincelle et de l'auto-inflammation, initiation et propagation de la combustion (définition des vitesses fondamentales de combustion), formation des polluants. Définition des besoins des motoristes en termes de données fondamentales
- ✓ Modèles thermodynamiques : classification des modèles thermodynamiques en modèles à air, à une zone, modèles à 2 zones ou multizones. Modèles de pertes aux parois de la chambre de combustion. Limites de validité.
- ✓ Modèles de combustion : modèle de combustion semi-empirique de Vibé, application au moteur à allumage commandé. Extension du modèle au moteur à allumage par compression. Modèles de combustion pour les moteurs à allumage commandé. Modèles de combustion pour les moteurs à allumage par compression (modèles de jet, de vaporisation, de délai d'autoinflammation, de combustion de la phase de prémélange et de diffusion).
- ✓ Modèles de transvasement : modèle de remplissage/vidage et modèle d'acoustique admission échappement 1D. Conditions aux limites : tubulure ouverte, fermée, partiellement ouverte, jonctions. Prise en compte des pertes thermiques et du frottement aux parois. Reconstruction de courbes de remplissage.
- ✓ Turbo-suralimentation : modèle statique et dynamique de turbocompresseur. Cartographies de rendement et de vitesse du turbocompresseur. Adaptation turbine/compresseur. Limite de pompage. Dynamique du turbocompresseur, notion de délai de réponse.
- ✓ Outil particulier : Matlab/Simulink, GTpower, Chemkin. Assemblage de modèles de moteurs à partir de bibliothèques de composants implémentant les modèles détaillés vus dans le cours.

Modalités de contrôle des connaissances **CONTROLE CONTINU CONTROLE TERMINAL CONTROLE MIXTE Nature** Répartition en % Nature Nb CC Durée Durée (oral / écrit) (oral/écrit) entre CC et CT 1ère session 4 Variable Oral et Ecrit **RNE RSE** Sans objet 2ème session RNE / RSE Responsable de l'enseignement : Pascal HIGELIN

PARCOURS:	G³		Geo²Env		CPRE		VSED	
OMA9VS05			Contrôle moteurs & Véhicules hybrides (Polytech')					
Semestre	3	Lang	ues de l'enseigne	ment	Français	Français / Anglais		
Crédits ECTS / Coeffici	ent 7	Mise	Mise à jour le			12 mai 2022		
Malaura haustus 45451	701-	D4		M	TD		TP	
Volume horaire total	70h	Dont	2	0h			50h	
Seuil de dédoublement								

Prérequis : automatique, systèmes de propulsion

Objectifs: (savoirs et compétences acquis)

- Maîtriser les systèmes de contrôle moteur, les stratégies, et le matériel (capteurs, actionneurs, contrôleur) associé.
- > Réaliser la mise au point des stratégies de contrôle des moteurs à combustion interne.
- > Appliquer les connaissances de cours sur la mise au point et le contrôle des moteurs à combustion interne sur banc d'essai, d'organes ou en simulation.
- > Faire un bilan d'énergie sur un véhicule hybride électrique et générer une loi de gestion d'énergie

Contenu:

1. Partie théorique

- ✓ Historique du contrôle moteur : carburateur, injection mécanique.
- ✓ État de l'art : capteurs, actionneurs, mise en œuvre matérielle et logicielle du calculateur, stratégies.
- ✓ Contrôle moteur à allumage commandé : stratégies de base (objectif de richesse, d'avance à l'allumage), dépollution (régulation richesse, catalyseur, light-off, EGR), détection du cliquetis, stratégies anti-cliquetis, ralenti, démarrage, démarrage à froid, agrément.
- ✓ Contrôle moteur Diesel : stratégies de base (quantité injectée, limite de fumée), injections multiples, moteurs à charge homogène, ralenti, démarrage, démarrage à froid, agrément.
- ✓ Méthodes de mise au point.
- ✓ Réseaux embarqués.
- √ Modèles embarqués : dynamique collecteur, turbocompresseur, carburant, frottement.
- ✓ Application de l'automatique : contrôle PID et contrôle avancé.
- ✓ Contrôle basé sur des modèles physiques ou heuristiques, contrôle en couple.
- ✓ Véhicule hybride : définitions, enjeux, gestion de l'énergie (heuristique, optimale).

2. Partie pratique

- ✓ Mise au point d'un moteur à combustion interne : 3 TP dont deux sur banc d'essai réel
- ✓ Contrôle moteur : 3 TP dont un sur banc d'essai d'organe et un au banc moteur
- ✓ Gestion d'énergie d'un véhicule hybride (1 TP sur banc à rouleaux).

Modalités de contrôle des connaissances

	C	ONTROL	E CONTINU	CONTR	ITROLE TERMINAL CONTROLE MIXT				
	Nb CC	Durée	Nature (oral / écrit)	Durée Nature (oral/écrit)		Répartition en % entre CC et CT			
1 ^{ère} session									
• RNE									
• RSE									
2 ^{ème} session									
RNE / RSE									

PARCOURS:		G³	Geo ² E	Env		CPRE		VSED
OMA9V	S06		Systèmes éne	rgétiques	(Pol	lytech')		
Semestre		3	Langues de l'ei	nseigneme	ent	Français	/ Ang	lais
Crédits ECTS / Coeffi	cient	7	Mise à jour le			12 mai 20	22	
Volume horaire total		70h	Dont	CM		TD		TP
volume noraire total		7011	Dont	43h75	5	20h		6h25
Seuil de dédoubleme	nt							
Descriptif de l'en	seigne	ement						
Prérequis :								
Objectifs : (savoirs et co ≻	ompétenc	es acquis))					
Contenu :								
Modalités de con	trôle c	les cor	nnaissances					
	C	ONTROL	E CONTINU	CONTR	OLE 1	TERMINAL	COI	NTROLE MIXTE
	Nb CC	Durée	Nature (oral / écrit)	Durée		Nature oral/écrit)		épartition en % entre CC et CT
1ère session								
• RNE								
• RSE								
2 ^{ème} session	2 ^{ème} session							
RNE / RSE	RNE / RSE							
Responsable de l'enseignement : Camille HESPEL								

PARCOURS:	G³	Geo ²	Env	CPRE	VSED		
OMA9VS07		Aéroacoustio	ue & Aéroélasticité (Polytech')				
Semestre	3	Langues de l'enseignement Français / Anglais					
Crédits ECTS / Coefficien	nt 7	Mise à jour le		12 mai 20	12 mai 2022		
Walana hamina tatal	701-	D4	CM	TD	TP		
Volume horaire total	70h	Dont	37h30	32h3	0		
Seuil de dédoublement			32 étu	d.			

Prérequis : Connaissances en dynamique des fluides et acoustique

Objectifs: (savoirs et compétences acquis)

➤ A l'issue de cette unité d'enseignement les élèves ingénieurs seront capables, à propos des aspects aéroacoustiques (bruits d'origine aérodynamique) et aéroélastiques (couplage aérodynamique - déformations élastiques), de comprendre et de décrire les principaux phénomènes physiques et leurs effets, associés en particulier à l'instationnarité des écoulements de fluides, et de mettre en œuvre quelques modélisations simples.

Contenu

- 1. Aéroacoustique: Notions générales de bruit aérodynamique, domaines d'application, propagation sonore en présence d'écoulement en milieu inhomogène, méthodes de calcul de bruit rayonné, sources de bruit, interaction écoulement et acoustique. Exemples concrets de nuisances sonores. Mouvements d'ondes instationnaires. Paramètres représentatifs du mouvement sonore local. Intensité, niveau sonore, sources sonores. Equation de propagation avec ou sans écoulement. Théorie de calcul de bruit aérodynamique (Lighthill).
- 2. Aéroélasticité: Description et analyse à l'aide des outils classiques et numériques de l'aérodynamique stationnaire et instationnaire et de la mécanique des solides déformables, des principales caractéristiques du comportement statique puis dynamique d'objets (profils, ailes, rotors...) déformables, soumis à l'interaction entre forces aérodynamiques, élastiques et inertielles, à l'origine des phénomènes de divergence aéroélastique stationnaire ou de flottement instationnaire. Introduction au problème de couplage fluide-structure. Rappels d'élasticité résistance des matériaux et d'aérodynamique. Aéroélasticité statique: formulation du problème et analyse de la divergence d'une aile de grand allongement et de l'inversion de gouverne. Aéroélasticité dynamique: Formulation du problème; distinction entre les différents modes de couplage aéroélastique (résonance, flottement). Flottement en aérodynamique stationnaire et application à l'aile plus souple en flexion qu'en torsion: stabilité aéroélastique et réponse dynamique au moyen de la section modèle. Aérodynamique instationnaire du profil d'aile et ses effets sur les résultats précédents

Modalités de contrôle des connaissances

inodantes de controle des connaissances								
	С	ONTROL	CONTINU	CONTR	OLE TERMINAL	CONTROLE MIXTE		
	Nb CC	Durée	Nature (oral / écrit)	Durée	Nature (oral/écrit)	Répartition en % entre CC et CT		
1ère session								
• RNE	4	Variable	Oral et Ecrit					
• RSE					Sans objet			
2 ^{ème} session								
RNE / RSE				2h	Ecrit			
Responsable de l'enseignement : Philippe DEVINANT								

Semestre 4

CODE APOGEE	OMA0RE01			OMA0VS02			OMA0VS01			
INTITULE	Stage – 4 mois minimum			Pro	ojet en (Polyt		se	Stage (Polytech')		
RESPONSABLE	Zeynep SERINYEL Valéry CATOIRE			Pierre BREQUIGNY			SNY	Christian CAILLOL		
VOLUME HORAIRE	8h				20	h		3h		
DEDARTITION HODAIDE	СМ	TD	TP	СМ	T)	TP	СМ	TD	TP
REPARTITION HORAIRE	8h						20h		3h	
ECTS	30				10)		20		
COMMUN										

PARCOURS:		3 ³	Geo ² E	Env		CPRE		VSED
OMA0RE0	1		Stage : 4 mois	minimum ((mars	à juin)		
Semestre		4	Langues de l'ei	nseigneme	ent	Français /	Angl	ais
Crédits ECTS / Coefficie	ent	30	Mise à jour le			12 mai 2022		
Volume horaire total		8h	Dont	СМ		TD		TP
volume noraire total		OH	Dont			8h		
Seuil de dédoublement						1 étud.		
Descriptif de l'ense	eigne	ment						
Prérequis :								
Objectifs : (savoirs et com	pétence	es acquis)						
Contenu :								
Modalités de contr	ôle d	es con	naissances					
	C	ONTROL	E CONTINU	CONTR	OLE 1	ERMINAL	NTROLE MIXTE	
N	NP CC	Durée	Nature (oral / écrit)	Durée		Nature oral/écrit)		épartition en % ntre CC et CT
1ère session			-					
• RNE								
• RSE								
2 ^{ème} session								
• RNE / RSE								
Responsable de l'enseignement : Zeynep SERINYEL - Valéry CATOIRE							ry C	ATOIRE

PARCOURS:	G³	Geo²l	Env	CPRE	VSED		
OMA0VS0	2	Projet d'Entreprise (Polytech')					
Semestre	4	Langues de l'e	nseignemen	t Français	Français / Anglais		
Crédits ECTS / Coefficie	ent 10	Mise à jour le		12 mai 20	12 mai 2022		
Valuus hamina tatal	201-	Dont	СМ	TD	TP		
Volume horaire total	20h				20h		
Seuil de dédoublement							

Prérequis :

Objectifs : (savoirs et compétences acquis)

- > Conduire une étude pour répondre à une problématique industrielle ou de recherche.
- > Développer et consolider les compétences disciplinaires acquises durant la formation.
- > Etablir un cahier des charges et planifier les tâches.
- > Faire un suivi régulier avec les interlocuteurs, organiser des réunions d'avancement.
- > Travailler en autonomie.
- > Synthétiser les progrès obtenus et les présenter sous forme de rapport et d'exposé.

Contenu:

- ✓ Sélection du projet
- ✓ Prise de contact avec le commanditaire de l'étude (entreprise ou laboratoire).
- ✓ Etablissement d'un cahier des charges soumis à l'approbation du commanditaire.
- ✓ Planification des tâches et des réunions d'avancement.
- ✓ Identification des outils et des ressources nécessaires à la conduite du projet.
- ✓ Analyse des risques et solutions de repli.
- ✓ Réalisation technique de l'étude.
- √ Mise à jour de l'état d'avancement du projet et mise en place des solutions de repli si nécessaire.
- ✓ Livraison d'un rapport de synthèse.
- ✓ Présentation orale des résultats de l'étude.

Modalités de contrôle des connaissances **CONTROLE MIXTE NOTE ELIMINATOIRE CONTROLE CONTINU CONTROLE TERMINAL** Nature Répartition en % **Nature** Nb CC Durée Durée (oral / écrit) (oral/écrit) entre CC et CT 1ère session 3 Variable Oral et Ecrit **RNE RSE** 2ème session RNE / RSE Responsable de l'enseignement :

Pierre BREQUIGNY

PARCOURS:] G³	Geo ² l	Env	CPRE	VSED		
OMA0VS0	1	Stage (Polytech')					
Semestre	4	Langues de l'e	nseignement	Français / Ang	Français / Anglais		
Crédits ECTS / Coefficie	ent 20	Mise à jour le		12 mai 2022	12 mai 2022		
Valuus haveins tatal	215	_ ,	СМ	TD	TP		
Volume horaire total	3h	Dont		3h			
Seuil de dédoublement							

Prérequis :

Objectifs: (savoirs et compétences acquis)

- > Postuler à une offre d'embauche au sein d'une entreprise, d'une collectivité ou d'un laboratoire.
- > Analyser un cahier des charges technique et conduire une étude en relation.
- > S'intégrer au sein d'une équipe de travail et adopter les règles métier.
- > Travailler en autonomie et être force de proposition.
- > Participer à des réunions d'avancement, le cas échéant en langue étrangère.
- > S'avoir communiquer sur son travail de manière synthétique sous forme de rapport et de présentations orales.

Contenu:

- ✓ En préalable au stage, l'élève-ingénieur initie une démarche autonome de recherche de stage adapté à son niveau d'études et à ces compétences.
- ✓ L'élève-ingénieur postule sur des offres de stage par l'envoi de CV/lettres de motivations et participe à des entretiens d'embauche.
- ✓ Le stagiaire s'intègre dans une équipe de travail en s'appropriant et/ou en adaptant les codes et les méthodes préconisés au sein de la structure d'accueil.
- ✓ Le stagiaire prend en main une étude en autonomie et communique sur les avancées du projet sous forme écrite et orale. Le stagiaire est force de propositions dont il fait part à sa hiérarchie.
- ✓ Les aptitudes du stagiaire à répondre aux attentes de l'étude (définition de la problématique, solutions mises en place, évaluation des risques, analyse des résultats et perspectives) sont évaluées au cours d'un examen organisé au sein de l'école sous forme orale et écrite

Modalités de contrôle des connaissances **NOTE ELIMINATOIRE CONTROLE CONTINU CONTROLE TERMINAL CONTROLE MIXTE** Nature **Nature** Répartition en % Nb CC Durée Durée (oral / écrit) (oral/écrit) entre CC et CT 1ère session **RNE** 1 Oral et Ecrit **RSE** 2ème session RNE / RSE Responsable de l'enseignement : Christian CAILLOL