

COURSE SYLLABUS

Polytech Orléans Course offer in English

2024-2025

Polytech Orléans École Polytechnique de l'université d'Orléans Direction des formations

Site Léonard de Vinci 8 rue Léonard de Vinci 45072 ORLÉANS cedex 02 FRANCE Site Galilée 12 rue de Blois – BP 6744 45067 ORLÉANS cedex 02 FRANCE

Foreword

This booklet gathers the courses that are taught in English at Polytech Orleans.

In the first part, "teaching packages" corresponding to different majors in Engineering are proposed. The student can choose one of them: they include all the courses for one semester at Polytech Orleans for each major. They are fully taught in English. By selecting a "teaching package", the student makes sure that there will not be any class schedule overlap. The total number of credits in "teaching packages" is about 30 ECTS.

In the second part of the booklet, a list of courses that are fully or partially taught in English are also listed with their corresponding number of ECTS.

Note that it is also possible attend courses in French for foreigners to complete your learning agreement.

	Extra courses at the French Institute (65€/ semester)	ECTS
1	Written French	2
2	Oral French	2

Automotive Engineering for Sustainable Mobility (AESM)

TU Code	Title of the Teaching Unit (TU)	Learning hours	ECTS
	OMOTIVE ENGINEERING for SUSTAINABLE BILITY (AESM)	664	60
1st y	rear AESM - Semester 1	347	30
1AE01	Trends in Automotive Transportation and Sustainable Mobility	10	1
1AE02	Scientific pre-requisite	50	5
1AE03	Electrical engineering	50	5
1AE04	IT: programming	50	5
1AE05	Advanced physics	50	5
1AE06	French culture and language	70	4
One Tead	ching Unit of your choice according to option ECM or VDIV		
1AE07	Vehicle Dynamics 1	65	5
1AE08	Internal combustion engines	65	5
1st y	ear AESM - Semester 2	317	30
2AE01	Acquisition systems and signal processing	50	5
2AE02	Real Time Programming	50	5
2AE03	Control and simulation of powertrains	35	5
2AE04	Project	130	10
One Tead	ching Unit of your choice according to option ECM or VDIV		
2AE05	Control and on-board diagnostics applied to internal combustion engines	50	5
2AE06	Control and on-board diagnostics applied to vehicle dynamics	50	5

1AE01

Semester 1

(AESM)

Trends in Automotive Transportation and sustainable Mobility

Supervisor: Luis LE MOYNE

ECTS: 1

Skills

At the end of this course, engineering students will be able to:

- Understand transport geo-politics.
- Understand the inventory of resources.
- Recognize operational actors in the transport sector.

Syllabus

- Sustainable mobility.
- Environmental incentives.
- Well-to-wheels CO2 analysis.
- Areas for technology improvements.

Grading

Written exam

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project		
10h00	0h00	0h00	1h15	0h00		
n person teaching: 10h00						

SD/SR:

Taught in English:ԹԹԹ

 $\bigcirc \bigcirc \bigcirc \bigcirc$

Innovation:

000

Automotive Engineering and Sustainable Mobility 1AE02 Semester 1 (AESM)

Scientific pre-requisite

Supervisor: Meryem JABLOUN

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

 Acquire skills and an understanding of mathematical tools necessary for studying and exploring characteristics of linear systems.

Syllabus

Fourier series decomposition

Perform Fourier Series decomposition on continuous-time periodic signals and understand Gibbs phenomenon

Linear differential equations

Solve linear differential equations: 1st and 2nd order cases: illustration and application to physical systems

Grading

Written exam

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project		
28h45	21h15	0h00	1h15	0h00		
In person teaching: 50h00						

Taught in English:խխխ SD/SR: Innovation:

Automotive Engineering and Sustainable Mobility 1AE03 Semester 1
(AESM)

Electrical engineering

Supervisor: Emmanuel BEURUAY

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Understand electrical and magnetism principles occurring in electrical motors divided in two parts: electrical motors and the dedicated converters.
- Understand the inner working of continuous and synchronous motors.
- Quantify the electrical efficiencies using active power, reactive power, apparent power, distortion power and power factor.

Syllabus

- Power: quantifying yields and efficiencies.
- Active, reactive, apparent, distortion power, power factor.
- Three phased system grid.
- Harmonic aspects in power and electromagnetic pollution.
- Magnetism applied to electrical motors. Loss reduction in permanent magnet rotors of synchronous machines.
- Continuous motors and AC/DC, DC/DC converters integrated power electronics. Step down and the step up chopper structures.
- Synchronous motors in servo synchronous machines with Pulse Width Modulator frequency converter
- Four practical sessions illustrate three kinds of motors and transformer needed in industrial processes.

Grading

Written exam, Oral exam

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project		
13h45	10h00	26h15	0h00	0h00		
In person teaching: 50h00						

in person teaching, some

Taught in English:ညြည် SD/SR: 💇 Innovation: 🔑 🔎

Automotive Engineering and Sustainable Mobility 1AE04 Semester 1 (AESM) **IT: programming** Supervisor: Rachid JENNANE ECTS: 5 Skills At the end of this course, engineering students will be able to: Analyze a problem Propose an algorithm Develop an architecture for a problem Use a development environment and a C/C++ compiler **Syllabus** Basics Structure of a program in C language Basic elements (character, type, constants, variables, blocs, etc.) **Instructions and Operators** Conditional structures, iterative structures and connections, etc. Pointers and dynamic variables Arrays Strings Functions, passing parameters: by value, by reference and by address Object oriented programming Structure of a program in C++ language Member variables and member functions Specialized constructors Overloaded functions and operators Data stream Abstract class Generic classes Grading Written exam Learning hours Lectures **Tutorials** Lab sessions Free labs Project

16h15

In person teaching: 50h00

Taught in English:խխխ

0h00

33h45

SD/SR:

0h00

(1)

0h00

Innovation:

D

P

Innovation:

Automotive Engineering and Sustainable Mobility 1AE05 Semester 1 (AESM) **Advanced physics** Supervisor: Azeddine KOURTA ECTS: 5 Skills At the end of this course, engineering students will be able to: Understand the inner working of power electronics Understand basic automotive aerodynamics Solve 1st and 2nd principle based thermodynamic problems **Syllabus** Power electronics Semi-conductor physics Power MOS **IGBT Automotive aerodynamics** Basics of aerodynamics Specificities of automotive aerodynamics Wind tunnel experiments Thermodynamics 1st and 2nd principle of thermodynamics Ideal gases Basic engine cycles Grading Written exam, Report Learning hours Lectures **Tutorials** Lab sessions Free labs Project 32h30 13h45 3h45 0h00 0h00 In person teaching: 50h00

SD/SR:

Taught in English:խխխ

Innovation:

Automotive Engineering and Sustainable Mobility 1AE06 Semester 1 (AESM) French culture and language Supervisor: Geanina BOUTONNE **ECTS: 4** Skills At the end of this course, engineering students will be able to: Understand spoken french and speak basic sentences. Read and write basic french. Hold a basic conversation. Syllabus French language sounds French grammar French conjugation Interactive discussions in French Grading Written exam, Oral exam **Learning hours** Lectures **Tutorials** Lab sessions Free labs Project 0h00 70h00 0h00 0h00 0h00 In person teaching: 70h00 00

SD/SR:

Taught in English:

Automotive Engineering and Sustainable Mobility 1AE07 Semester 1
(AESM)

Vehicle Dynamics 1

Supervisor: Pascal HIGELIN

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Understand vocabulary, technology and general issues and goals of vehicle dynamics applied to passenger cars.
- Choose and model a tire. Design or choose front and rear axles technologies according to an expected behavior. Design suspension systems and anti roll bars.
- Model the behavior of a car using several numerical models, and compare them to real world test measurements.
- Conduct experimental measurements on a real axle or a complete vehicle to obtain the variation of the geometrical characteristics length and angles for roll, pumping and pitching.

Syllabus

- Generalities: SAE Coordinate System. Definition of specific vocabulary. Motion variables. Basic geometry of an Axle (toe, caster, camber, kingpin etc.) and its effect on drivability.
- Tire: Constitution and behavior. Vertical, longitudinal and lateral modelling. Auto- align torque.
 Pacejka Model and introduction to TM Easy Model.
- Axle: Kinematics modelling of various axle using the theory of the mechanism. Suspension steer and roll properties. Analysis of the design effects on the change of characteristic angles and length (toe, camber etc.) as a function of pumping and rolling. Roll Center of an axle.
- Vertical behavior and suspension design. Spring and shock absorber design for sprung mass, un-sprung mass control in the case of pitching and pumping behavior.
- Transversal Behavior: Ackermann Geometry. Jeantaud's steering system. Bicycle Model. Over steer coefficient, characteristic speed, yaw speed gain. Roll Stiffness of an axle. Roll Flexibility. Lateral Load Transfer. Anti-roll bar design.
- Numerical simulations and comparison to real test results using several models (Simulink, Thesis).
- Practical work 1: Experimental measurements and modeling of the kinematics roll effects on camber and steering angle for the H-Frame axle.
- Practical Work 2: Experimental measurement of suspension steer, roll effect and pitch effect on the geometrical characteristic angles, for a complete car, in case of pure pumping.

Grading

Written exam, Oral exam, Report

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project		
35h00	22h30	7h30	0h00	0h00		
In person teaching: 65h00						

Taught in English:പ്രവാദ SD/SR:

00

Innovation:

Automotive Engineering and Sustainable Mobility 1AE08 Semester 1 (AESM)

Internal combustion engines

Supervisor: Pascal HIGELIN

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Understand the physical and chemical processes occurring during combustion and scavenging in internal combustion engines. Understand the behavior of an engine when changing its settings using modeling.
- Be able to build an internal combustion engine model. Be able to optimize the size and settings of an engine performance under efficiency, power, emission constraints using modeling.

Syllabus

- Combustion: Thermochemistry and Kinetics applied to combustion. The self-ignition. Premixed
 flames, flammability limits, flame stability, turbulent combustion. Diffusion flames, biphasic
 combustion. Internal aerodynamics of an engine. Mixture preparation, requirements of spark
 ignition and self-ignition, initiation and propagation of combustion (definition of core burning
 speeds), formation of pollutants. Identification of engine manufacturers needs in terms of
 fundamentals.
- Thermodynamic models: Classification of thermodynamic models: air cycle models, one and two zone models, multizone models. Combustion chamber walls losses models. Limits of validity.
- Combustion models: semi-empirical combustion models, application to spark ignition engines.
 Extension to compression ignition engines. Combustion models for spark ignition engines.
 Combustion models for compression-ignition engines (spray patterns, combustion models in the premix and diffusion phase).
- Scavenging models: filling/emptying models and acoustic 1D intake/exhaust. Boundary conditions: open tubing, closed, partially open junctions. Consideration of thermal losses and friction to the walls. Filling efficiency curves reconstruction.
- Specific Tool: Matlab/Simulink, GTpower, CHEMKIN.

Grading

Written exam, Oral exam, Report

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project
16h15	41h15	7h30	0h00	0h00
	651.00	•	•	•'

In person teaching: 65h00

Taught in English:원원 SD/SR: 👽 🗨 Innovation: 🔑

Automotive Engineering and Sustainable Mobility 2AE01 Semester 2 (AESM)

Acquisition systems and signal processing

Supervisor: Philippe RAVIER

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Mastering Analog to Digital conversion for digital systems
- Mastering the Fourier Transform for spectral analysis of the data
- Selecting and implementing an FIR or IIR filter on a dedicated hardware or software architecture

Syllabus

Signal processing basics

- Analog and digital representation, Shannon theorem
- Time and frequency representation
- Fourier transform
- Noise processing

Digital filtering

- Z transform for digital signals
- Transverse filters
- Recursive filters

Grading

Written exam

Learning	h
Learning	Hours

Lectures	Tutorials	Lab sessions	Free labs	Project
20h00	20h00	10h00	0h00	0h00
				•

In person teaching: 50h00

Taught in English:矩矩 SD/SR: Innovation:

Automotive Engineering and Sustainable Mobility 2AE02 Semester 2 (AESM)

Real Time Programming

Supervisor: Raphaël CANALS

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Mastering techniques for the implementation of digital systems
- Understanding and implementing hardware and software for real-time systems
- Controlling the CAN and FlexRay communication buses

Syllabus

Digital systems

- Number coding and algebra.
- Analog-to-digital and digital-to-analog conversions.

Electronic components

Microcontrollers: applications in automobile.

Microcontrollers: structure and implementation.

Architecture of a microcontroller board.

Role and place of an OS on a processor board.

Architecture of an OS.

Calls to OS functions.

Automotive communication buses

CAN and FlexRay buses architecture.

Communication protocols.

Grading

Written exam

Learnin	

Lectures	Tutorials	Lab sessions	Free labs	Project
17h30	10h00	15h00	3h45	7h30

In person teaching: 50h00

Taught in English:එව SD/SR: Innovation:

2AE03 Semester 2

(AESM)

Control & Simulation of Powertrains

Supervisor: Alain CHARLET

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Understanding why and how hybridization works
- Understanding where energy is lost in a car vs driving conditions
- Being able to build a simple model of a car and its control

Syllabus

Part 1: Control of powertrains

Anti-lock Bracking System (ABS) & Cruise control. This study is performed in simulation with the software Matlab/Simulink.

Part 2: Simulation of powertrains

An overview of electric hybrid powertrains is proposed.

Then, students work on a simulation platform (Simcenter AMESim by Siemens) where they have to build an energy balance of a conventional vehicle.

This study is completed by two practical classes on a rolling test bed where students measure energetic performances of a conventional car vs hybrid car (Toyota Yaris)

Grading

Written exam, Oral exam

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project
5h00	22h30	7h30	0h00	0h00
	'			

In person teaching: 35h00

Taught in English:ஸ்ஸ்ஸ் SD/SR: 💖 Innovation:

Automotive Engineering and Sustainable Mobility 2AE04 Semester 2 (AESM)

Project

Supervisor: Pascal HIGELIN ECTS: 10

Skills

At the end of this course, engineering students will be able to:

- Split a complex task into subtasks. Plan and schedule tasks.
- Work as a group. Assign tasks to members of the group taking dependencies into account
- Select the more adequate modeling level and simulation tool
- Present work performed in a concise way focusing on the most important aspects
- Build working powertrain and vehicle dynamics models based on experimental data

Syllabus

- Reformulation of project subject
- Split subject objectives into tasks and sub-tasks
- Schedule tasks and assign them to project members
- Report work performed, current state and upcoming tasks every 2 weeks

Grading

Thesis, Oral exam

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project
0h00	0h00	0h00	3h00	130h00
In person teachin	g: 130h00	•	•	•

Taught in English:ម៉ាម៉ាម៉ា SD/SR: Innovation:

2AE05

Semester 2

(AESM)

Control and on-board diagnosis applied to ICE

Supervisor: Guillaume COLIN

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Find the good set of parameters for a PID controller on simple systems
- Tune an internal combustion engine control
- Control some simple actuators
- Define, parameterize and implement a simple observer-based diagnosis tool

Syllabus

State of the art of engine control: sensors, actuators

- Gasoline engines
- Diesel engines

Automatic control

- Linear Models (1st order, 2nd order)
- Conventional Linear Control (PID)

Applications to powertrain control: labs

- Experimental engine test benches: tuning and control
- Hardware in the Loop (HIL) & Rapid prototyping for Control: Application on valves

On Board Diagnosis

- Rule based diagnosis
- Observer based diagnosis with numerical simulations on Matlab/Simulink

Grading

Written exam, Oral exam

			ırs

	<u>.</u>	<u>.</u>	<u>.</u>	_
Lectures	Tutorials	Lab sessions	Free labs	Project
23h45	10h00	16h15	0h00	0h00

SD/SR:

In person teaching: 50h00

Taught in English:խխխ

Innovation:

00

2AE06

Semester 2

(AESM)

Control and on-board diagnosis applied to vehicle dynamics

Supervisor: Guillaume COLIN

ECTS: 5

Skills

At the end of this course, engineering students will be able to:

- Find the good set of parameters for a PID controller on simple systems
- Tune a vehicle dynamics control
- Control some simple actuators
- Define, parameterize and implement a simple observer-based diagnosis tool

Syllabus

State of the art

Hardware (sensors, actuators...)
Software

Automatic control

- Linear Models (1st order, 2nd order)
- Conventional Linear Control (PID)

Applications to vehicle dynamics: labs

- Tuning a vehicle dynamics controller
- Hardware in the Loop (HIL) & Rapid prototyping for Control: Application on valves

On Board Diagnosis

- Rule based diagnosis
- Observer based diagnosis with numerical simulations on Matlab/Simulink

Grading

Written exam, Oral exam

Learning hours

Lectures	Tutorials	Lab sessions	Free labs	Project
31h15	8h45	10h00	0h00	0h00

In person teaching: 50h00

Taught in English:խխխ SD/SR: 💖 Innovation: 🔑