26

POLYTECH® ORLÉANS

Ecole d'ingénieurs de l'université d'Orléans

COURSE **SYLLABUS**

Polytech Orléans Course offer in English

2025-2026

Polytech Orléans École Polytechnique de l'université d'Orléans Direction des formations \bowtie : <u>direction.formations.polytech@univ-orleans.fr</u> International Relations Office \bowtie : <u>international.polytech@univ-orleans.fr</u>

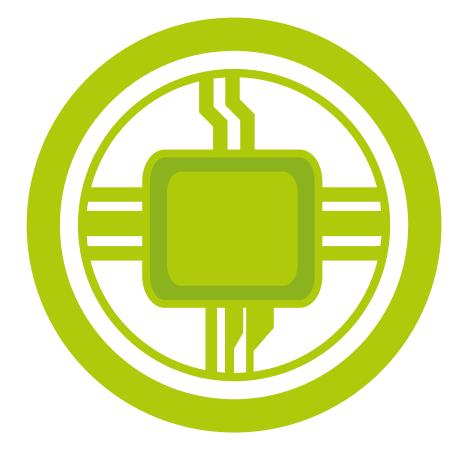
Site Léonard de Vinci 8 rue Léonard de Vinci 45072 ORLÉANS cedex 02 FRANCE Site Léonard de Vinci 8 rue Léonard de Vinci 45072 ORLÉANS cedex 02 FRANCE

Foreword

This booklet gathers the courses that are taught in English at Polytech Orleans.

In the first part, *"teaching packages"* corresponding to different majors in Engineering are proposed. Students can choose one of them: they combine English taught courses with research activities within a lab. By selecting a "teaching package", students make sure that there will not be any class schedule overlap. The total number of credits in "teaching packages" is about 30 ECTS.

In the second part of the booklet, a list of courses that are fully or partially taught in English are also listed with their corresponding number of ECTS awarded for each of them.


Note that it is also possible to add on your leaning agreement the French courses taught at the French Institute on our campus.

	Extra courses at the French Institute (65€/ semester)		
1	Written French		2
2	Oral French		2

Content

Content	3
Engineering Physics and Embedded Systems (GPSE)	4
Plasma Engineering Package	5
EMBEDDED SYSTEMS ENGINEERING PACKAGE	11
COMPUTER VISION & DEEP LEARNING PACKAGE	14
Materials, Mechanics, Mechatronics (M ³)	17
MULTIPHYSICS MODELING AND SIMULATION PACKAGE	18
Civil and Geo-environmental Engineering (GCGE)	20
SUSTAINABLE CONSTRUCTION PACKAGE	21
GEO-ENVIRONMENTAL ENGINEERING AND SUSTAINABLE CITIES PACKAGE	23
Technologies for Energy, Aerospace and Motoring sciences (TEAM)	25
AEROSPACE ENGINEERING PACKAGE	26
Other courses partially or fully taught in English at Polytech Orleans	31
Technologies for Energy, Aerospace and Motoring sciences (TEAM)	32
4th year / Master 1 courses	33
5th year / Master 2 courses	42
Automotive Engineering for Sustainable Mobility (AESM)	53
Summer school "robotics challenge"	69
BIP DT4BH - Digital Tools for Built Heritage	71

Engineering Physics and Embedded Systems (GPSE)

PLASMA ENGINEERING PACKAGE

	5th year- Master 2				
Fall S	Semester (September – December)	Course Unit code	Total Hours	ECTS	
1	Plasma Engineering Courses	9GPo8	70h	7	
2	Practical applied learning	9GP10	40h	5	
3	Engineering Project Phase 1	9GP07	100h	9	
4	Reserch Project with Gremi Lab for foreign students	POLUP10		10	
	Total				

Softskills available with this package

5	Intercultural communication	9HPo2	22h30	2
6	Intercultural communication start up project	9HPo3	10h	2

PREREQUISITES

An undergraduate preparation is required in electrical engineering or engineering physics from an accredited institution from an acceptable foreign university.

STUDENT OUTCOMES

An ability to determine properties at the macroscopic scale from electromagnetism, statistic physics and collision between particles.

An ability to design and characterize low pressure plasma reactors used for micro and nano technologies An ability to generate and characterize plasmas produced using experimental reactors and diagnostics. An Ability to develop plasma processes (deposition, etching...) in a clean room environment. Laboratory research experience.

Unit Courses Hours Plasma general properties (neutrality, Debye Length, plasma 2:30 frequency...) Plasma dynamics (basic motions in E and B fields) 2:30 Elementary theory of a gas discharge 2:30 **Plasma** general properties **Bolzmann's equation : Distribution functions and exercises** 5:00 (25h) Particle, Momentum and energy conservation 2 :30 Atomic collisions - Elastic scattering - Inelastic scattering 5:00 Waves in a plasma 2:30 Tests 2 :30 Equilibrium Vs. non Equilibrium 2:30 **Streamers** Introduction to high 2:30 **High pressure discharges** 5:00 pressure plasma Medical applications (15h) 2:30 Tests 2:30

1) PLASMA ENGINEERING COURSES (70H)

	DC discharge	2:30
	Sheath	2:30
	Diffusion	2:30
	Power balance	1:15
Low pressure plasmas	RF sheaths	1:15
(30h)	Capacitively coupled plasmas	2:30
	Inductively coupled plasma	2:30
	Matching networks	3:45
	Langmuir probes	2 :30
	Global model	5 :00
	Tests	3:45

2) **PRACTICAL APPLIED LEARNING (40 HOURS)**

These projects are dedicated to teaching systems, processes and diagnostics in plasma engineering. They are proposed to better understand theoretical concepts of plasma dedicated courses. Each group of 2 students will work on 3 projects. Each project will last 3 days (6h15 of experimental work per day). They will be supervised by professors and a research engineer. One of the 3 projects will be organized in the clean room facility.

		1 - 1		•					
	N_2	DC Disch	RF/TCP	LIF	Jet	MHCD	Etchin	PVD	PECVD
	Laser						g		
LAS	✓			✓					
LP PLAS	✓	✓	✓	✓			✓	√	✓
HP PLAS					✓	✓			
VACUUM			✓			✓	✓	√	✓
ОРТ	✓		✓	✓		✓			
SPECTRO	✓	✓	✓	✓	✓	✓			
ELEC	✓	✓	✓	✓	✓	✓			
MAT							√	✓	✓
	Faraday/Langmuir CLEAN ROOM								

Competences for each project:

LAS : Laser LP PLAS : Low Pressure Plasma SPECTRO : spectroscopy diagnostics (emission, absorption, ...) ELEC : electrical diagnostics (oscillo, probes, electrical measurements,

HP PLAS : High Pressure Plasma MAT : materials characterisation

1. N₂ LASER – UV pulsed laser : electrical and optical optimisation

...)

The objective of this project is to build a UV laser with a system looking like those used for excimer pulsed lasers. For safety reasons, the discharge is carried out in nitrogen rather than in a halogen gas. This UV laser will serve to pump a dye laser.

Vary the number of knob capacitors to see its effect on the laser performances and the voltage waveforms. Get

information on excimer lasers.

Skills: use correctly an oscilloscope, fluid manipulation, use a high voltage powersupply, make a pulsed power system, characterize the emission by photodiode and by spectroscopy.

2. DC DISCH – Breakdown in a gas. DC discharges for lighting applications

The objective of this project is to analyse a DC discharge at low pressure (ignition and operation regimes). Different gases will be studied (Ar, N₂ and He).

Study of the breakdown in different gases (Paschen law,...). Analyse $V_{breakdown}$ versus the product pressure times electrode distance. Fit with the theoretical curve. Find the coefficients and compare with theoretical values. Make a statistic on each point of the breakdown curve. Plot V-I curves – Identify the different regimes for each gas.

Skills: generate a DC discharge, plasma diagnostic, electrical circuit for V-I acquisition, breakdown in gases, discharge regimes.

3. *RF* – Radio frequency discharges.

The objective is to analyse and use an RF discharge, which is usually used in microelectronics processing. The transition from capacitive (E) to inductive (H) will be studied. A spectroscopic study will be carried out in a mixture of Ar and H₂. A Langmuir probe will be installed to analyze the plasma in different conditions of operation. An RF probe will be used to determine the plasma impedance.

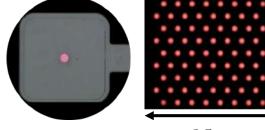
Skills: generate an RF discharge, use a RF power supply, matching networks, spectroscopy (OES), vacuum technology, oscilloscope, Hydrogen dissociation.

4. LIF – Laser Induced Fluorescence

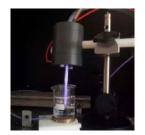
The objective of this project is to trigger a Laser Induced Fluorescence (LIF) in argon plasma. Several transitions will be studied. The evolution of the metastable density will be evaluated versus pressure and current. You will study the LIF signal at 800.6 nm and at other wavelengths. You will write down the balance equations and compare the deexcitation characteristic time to its theoretical. Plot the relative metastable density versus pressure and discharge current.

Skills: Use of a Nd :YAG laser, doubled in frequency, OPO crystal, DC high voltage, PM signal measurement

5. Jet – Plasma jet

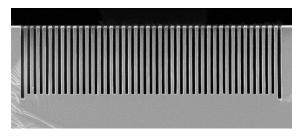

The objective is to characterize a plasma jet usually used for medical applications. You will use a high frequency power supply (10kHz) producing DBD type discharges travelling along a dielectric tube at high velocity. The jet characterization will be carried out by electrical and optical measurements. Experiments on surface treatment will be carried out as well.

Skills: Plasma at atmospheric pressure, electrical and optical characterization, treatment process.


6. MHCD – MicroHollow Cathode Discharges

The objective is to study and characterize microdischarges operating in DC. The typical dimension of the discharge is 100 μ m. The microdevices are prepared in the clean room. You will use a high speed camera, a spectrometer, an oscilloscope and probes to characterize the different regimes of the microdischarges operating in atmospheric pressure of Ar, He and N₂. The discharge breakdown and the selfpulsing regime will be investigated. You will also try to light up an array of microdischarges.

Skills: Plasma at atmospheric pressure, electrical and optical characterization, electrical circuit for V-I acquisition, breakdown in gases, discharge regimes.



7. Etching - Reactive Ionic etching and Inductively coupled plasma

The objective is to design an etching process for silicon or SiO_2 etching, study the selectivity, and optimize the process to obtained a good profile.

- Etching process characterization using an RF capacitive discharge.
- Vary the parameters to optimize the etching of silicon and other materials. Comparison of the etch rate obtained by SEM and by profilometry.

Skills: Use of an inductively coupled plasma reactor, vacuum systems, process development, etching mechanisms, cryogenic systems, SEM characterisation, profilometry.

8. PVD – Thin film deposition by Physical Vapor Deposition

Deposition by PVD is commonly used in the industry to form thin metal layers. The aim is to study the film thickness and properties depending on the process conditions. Characterizations will be carried out using a SEM, profiolmeter, 4 tip probe. A study can be carried out on high aspect ratio structures to evaluate if the deposition is conform or not.

Skills: Use of a DC plasma reactor equipped with a magnetron, vacuum system, , deposition process, SEM characterisation, profilometry , 4 tip probe

9. PECVD – Dielectric layer deposition by Plasma Enhanced Chemical Vapor Deposition

The objective is to study the growth of a dielectric using a PECVD process. Two types of dielectric can be studied: SiO_2 or Si_3N_4 . The project will consist in modifying the recipes and see the effect on the deposited layer. An ellipsometer and a SEM wil be used to evaluate the deposited layer.

Skills: Use of a capacitively coupled plasma reactor equipped with a heating substrate holder, vacuum system, deposition process, SEM characterization, ellipsometry

3) ENGINEERING PROJECT: PHASE 1

You will work on a project focused on plasma engineering between September and December, every 2 weeks, alternating with class periods. Different projects will be proposed at the beginning

of the semester. The project may be in collaboration with a company. You will write a report and defend it orally in December.

4) <u>Research Project with GREMI Lab</u> (10 ECTS)

Between September and December, you will join a research team to work on a dedicated project in collaboration with GREMI lab (e.g. plasma etching process, plasma for medical application, plasma deposition process, plasma diagnostics, microplasmas, ...) At the end, you will write a report and defend it orally.

Gremi 🖊

Note that the project with GREMI can be an extension of the "Engineering project: Phase 1".

EMBEDDED SYSTEMS ENGINEERING PACKAGE

	4th year- Master 1					
Fall Semester (September – December) Course Unit code Total Ho			Total Hours	ECTS		
1	Courses and Board Design (microcontroller)	7GP04	100h	8		
2	Engineering project	7GP07	55h	6		
3	Supervised Project at Prisme Lab	POLUP15		15		

Softskills available with this package

4 English and science	7HP02	40h	3
-----------------------	-------	-----	---

PREREQUISITES

An undergraduate preparation is required in electrical and/or computer engineering from an accredited institution from an acceptable foreign university.

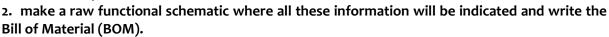
- C/C++ language
- Basics in Electronics

1) <u>COURSES</u> AND BOARD DESIGN (100H)

Unit	Courses	Hours
	Number coding in embedded systems	1:15
prerequisite reminders (7h3o)	Compilation process	2:30
	Git lab	2:30
	tests	1:15
System control	Finite state machines	5:00
approaches	Introduction to PID	11:15
(18h45)	Tests	2:30
	Part I	5:00
Hardware Architecture	tests	1:15
(12h30)	Part II	5:00
	Tests	1:15
	Architecture and registers	2:30
	Lab : UART link principles and implementation	3:45
ATMEGA 328P Example	Lab : SPI link principles and implementation	3:45
(18h45)	Lab : I2C link principles and implementation	3:45
	Interruptions and timer	2:30
	tests	2:30
	Architecture and registers	3:45
	Lab : UART link principles and implementation	3:45
STM8 Example (16h15)	Lab : I2C link principles and implementation	3:45
(10115)	Lab : Sleep mode principles and implementation	3:45
	Tests	1:15

BOARD DESIGN (26 HOURS WITH TEACHERS + 50 HOURS IN AUTONOMY)

The goal is to design a daughter board for the STM8 discovery kit <u>https://www.st.com/en/evaluation-tools/stm8s-discovery.html</u>).


This daughter board will include :

• a microphone with an analog circuit to adapt, filter and amplify the acquired signal. The audio signal is connected to the STM8 ADC for sampling,

- an I2C magnetic sensor
- an UART/USB interface to connect a PC to the STM8S board.

The student will learn to :

1. read the datasheets, extract the useful information (pinout, constraints (voltage, current, power, size, dimensions...),

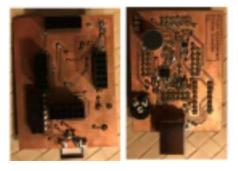
3. create the schematic, then place and route with a Computer Aided Design (CAD) software (<u>https://easyeda.com/</u>)

4. print the daughter board PCB

5. debug & test the daughter board

2) <u>Engineering Project</u> (50H with Teacher + 100H IN AUTONOMY)

Within a team (maximum 4 students), the student will work on a real embedded system project (examples given below), from the early specifications to the proof of concept. An average of 1 day per week will be spent on that project.


Lessons on project methodologies will be given :

- introduction to project management through a serious-game,
- introduction to system architecture,
- a Model-Based Systems Engineering tools (Capella) will be presented.

A supervisor will be attached to the team. Regular meetings are planned to keep the team on track. Three oral presentations are scheduled with several project committees :

- 1. an audit of the specifications and use cases by 2 external professional experts
- 2. a preliminary design review to validate the functional and technical design
- 3. a final presentation to present the proof of concept.

These oral presentations plus a final technical report will be evaluated.

Project examples :

- drone design
- Solar tracker
- autonomous forest monitoring system

Figure 1: drone design

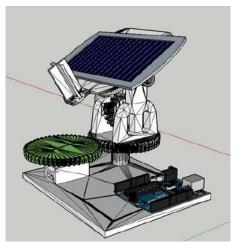


Figure 2 : Drawing of a solar tracker

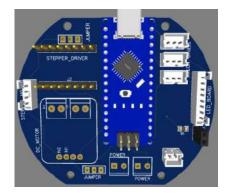


Figure 3: control unit and telemetry unit for a student rocket project

Figure 2: Computer vision for an autonomous robot

3) PROJECT WITH PRISME LAB (15 ECTS)

Between September and December, each student joins a research team to work on a dedicated project in collaboration with PRISME lab (AI – Signal - Image – Vision team).

At the end, the student will have to write a report and defend it orally.

Note that the project with PRISME laboratory can be an extension of the "Engineering project".

COMPUTER VISION & DEEP LEARNING PACKAGE

	5th year- Master 2						
Fall S	Fall Semester (September – December)CourseUnit code		Total Hours	ECTS			
1	Computer Vision & Deep Learning	9GPo9	70h	7			
2	Embedded Vision (Practical applied learning)	9GP10	40h				
3	Engineering Project Phase 1	9GP07	100h	9			
4	Research project on Computer Vision & IA (PRISME Labs)	POLUP10		10			
	Total			31			

PREREQUISITES

Python programming, basic mathematics (matrix calculation) and signal processing.

STUDENT OUTCOMES

- Identify the key points of a computer vision problem.

- Select and calibrate image sensors (cameras).

- Develop a solution with appropriate image processing algorithms, including AI deep learning, using Python libraries.

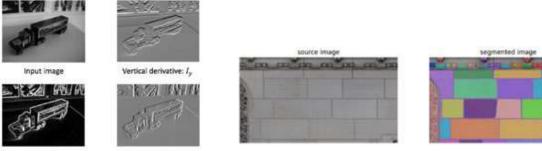
- Evaluate algorithms performance, parameters settings, and limitations.

1) COMPUTER VISION AND DEEP LEARNING (70H)

This course aims to introduce students to the key concepts of computer vision and its evolution towards deep learning and artificial intelligence. Theoretical concepts of camera use and image processing basics will first be presented in a session of a few lectures, then students will develop their skills through guided practical sessions on several examples (image classification, segmentation, object detection, ...). The proposed teaching method is "learning by doing", with a strong emphasis on hands-on experience using popular Python-based libraries (OpenCV, Scikit-image, Pytorch, Tensor Flow/Keras), with which you can familiarize yourself.

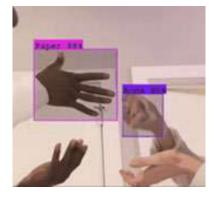
Unit	Courses	Hours
	Introduction to Computer Vision: challenges and applications	1:15
	From photons to pixels: The basics of image capture and processing	1:15
Basics in Computer	Image and pixels manipulation, geometric and color transformations	3:45
Vision (17h30)	Preprocessings, histogram, equalization, contrast adjustment	3:45
	Thresholding, blob analysis	3:45
	Fourier transform, convolutional filtering and noise reduction	3:45
3D Vision Geometry	Camera model and calibration, 3D scene reconstruction	1:15

(12h30)	Stereovision	3:45
	Camera model and pose estimation	3:45
	Panorama stitching with homography	3:45
	Mathematical morphology	3:45
Advanced image	Texture analysis	3:45
processing	Application to medical image	3:45
(18h45)	Contour and region segmentation algorithms	3:45
	Application to medical image	3:45
	Introduction to deep learning and conventional neural networks (CNN)	2:30
	First steps with CNN and deep learning	3:45
Deep learning for CV	Image segmentation with U-net architectures	3:45
(21h15)	Object detection with YOLO (You Only Look Once)	3:45
	Fine-tuning and transfer learning	3:45
	Generative Adversarial Networks (GAN)	3:45


2) REAL-TIME EMBEDDED VISION – PRACTICAL APPLIED LEARNING (40 HOURS)

This course is dedicated to embedded vision problems with memory and computation time optimization along 2 tracks: develop a mobile application centered on the use of embedded sensors and image processing under Android with OpenCV (multithreading), from GitHub collaborative platform for developers; and implement an image processing algorithm on an FPGA target.

3) ENGINEERING PROJECT: PHASE 1


You will work on a project focused on computer vision and/or deep learning topics between September and December, every 2 weeks, alternating with class periods. Different project topics will be proposed to students at the beginning of the year, with associated supervisors. Some projects may be carried out in collaboration with a company. At the end of the project, you will write a report and defend it orally in December.

Horizontal derivative: I_x

segmented image			
100 m	Contractory.	ALC: NOTE: NO	State of the local division of the local div
			Statistics and its
			The survey of th



4) PROJECT ON COMPUTER VISION & IA IN PRISME RESEARCH LABORATORY (10 ECTS)

Between September and December, each student joins the Computer Vision & IA Team in PRISME Labs to work on a dedicated project. The project can be an extension of the "Engineering project: Phase 1. Students will be supervised by a teacher-researcher. At the end, the student will have to write a report and defend it orally.

Materials, Mechanics, Mechatronics (M³)

	5th year- Master 2				
Fall Semester (September – December) Course Unit code Total Hours ECT				ECTS	
1	Non- linear behavior law	9IC10	30h	3	
2	Advanced simulation	9IC13	30h	3	
3	Composites simulation	9IC16	30h	3	
4	Optimization and additive fabrication	9IC22	30h	3	
5	Supervised Project in LAME lab	POLUP15	150h	15	

MULTIPHYSICS MODELING AND SIMULATION PACKAGE

Softskills available with this package (one of the following courses)

4	Intercultural communication	9HM02	22h30	2
5	Intercultural communication start- up project	9HMo3	10h	2

PREREQUISITE

Knowledge in solid mechanics, computational mechanics, applied mathematics.

STUDENT OUTCOME

R&D sector, industry, doctorate studies.

SUPERVISED PROJECT IN LAMÉ LAB

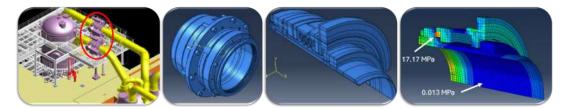
Between September and December, each student joins a research team to work on a dedicated project in collaboration with LaMé lab (e.g. characterizing and modeling the mechanical behavior of materials and structures (composite material, refractories, biomaterial...).

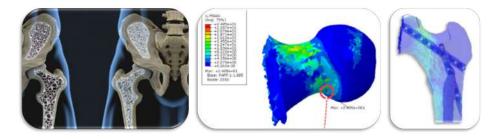
At the end, the student must write a report and defend it orally.

300 hours of project including about 100h of training.

Examples of realized projects

Topology optimization of structures


Antenna protection of a military aircraft


Instrumentation of a concrete 3D printing robot

Optimization of a quarter-turn valve for a nuclear application

Optimization of hip implants

Civil and Geo-environmental Engineering (GCGE)

SUSTAINABLE CONSTRUCTION PACKAGE

	5th year- Master 2			
Fall S	emester (September – December)	Course Unit code	Total Hours	ECTS
1	Structures under dynamic and environmental loads	9CD01	70h	8
2	BIM project	9CD04	16h	6
3	Supervised Project in LAME lab	POLUP15		15

Softskills available with this package

4	Intercultural communication	9HC02	22h30	2
5	Intercultural communication start up project	9HCo3	10h	2

PREREQUISITE

Knowledge in structural mechanics, soil mechanics, geotechnics, civil engineering materials, CAD.

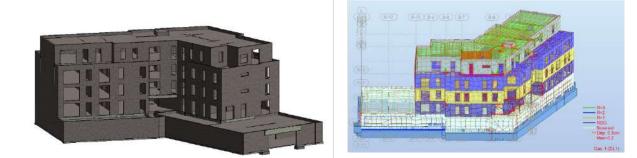
STUDENT OUTCOME

Construction industry: buildings, transport infrastructure, engineering structures, from both companies and contractors points of view

STRUCTURAL ENGINEERING COURSES

Unit	Courses	Hours
Structures under dynamic and environmental loads	Durability of materials and structures	31.25 h lecture
	Dynamics and Parasismics	
	Soil-structure interaction	12.5 tutorials 26.25 h labs
	Snow and wind loads	-

1) BIM PROJECT


BIM project	BIM application of structural engineering	16 h labs 14 h autonomy
-------------	---	-------------------------------

2) SUPERVISED PROJECT IN LAMÉ LAB

Between September and December, each student joins a research team to work on a dedicated project.

At the end, the student must write a report and defend it orally. 150 hours of project

Project illustrations in sustainable construction

Robot Structural Analysis

GEO-ENVIRONMENTAL ENGINEERING AND SUSTAINABLE CITIES PACKAGE

5th year- Master 2				
Fall Se	mester (September – December)	Course Unit code	Total Hours	ECTS
1	Polluted sites and soils	9GE01	45h	6
2	Water Resource and Environment Management	9GE02	30h	8
3	Supervised Project in LAME lab	POLUP15		15

Softskills available with this package:

4	Intercultural communication	9HCo2	22h30	2
5	Intercultural communication start up project	9HCo3	10h	2

PREREQUISITE

Knowledge in geology, civil engineering materials, water resources.

STUDENT OUTCOMES

Pollution diagnosis and treatment for construction sites, water management, smart urban planning.

1) GEO-ENVIRONMENTAL ENGINEERING COURSES

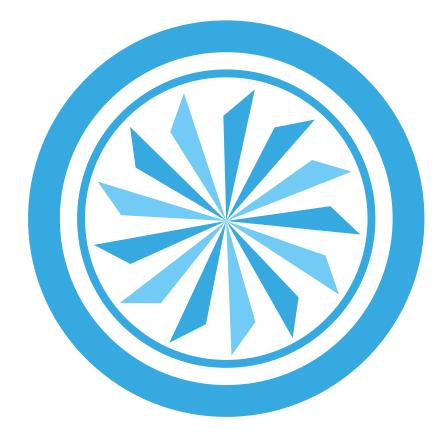
Unit	Courses	Hours
		25h lecture
Polluted sites and		12.5h tutorials
soils		7.5h labs
		8.75h autonomy

2) PROJECT

Water Resource and Environment Management	Vulnerability, risks	5 h lectures
	Field hydrology	3.75 lecture 5 h tutorials 3.75 h autonomy
	Water management	3.75 h lecture 6.25 tutorials
	Water and wastewater treatment	6.25 h lecture 12 50 autonomy

3) SUPERVISED PROJECT IN LAMÉ LAB

Between September and December, each student joins a research team to work on a dedicated project. At the end, the student must write a report and defend it orally.


Project illustrations in Geo-Environmental engineering and sustainable cities

Technologies for Energy, Aerospace and Motoring sciences (TEAM)

5th year- Master 2				
Fall Semester (September – December)		Course Unit code	Total Hours	ECTS
1	Turbulence and advanced CFD	9TE11	47h	8
2	Multiphysics coupling in aerodynamics	9TE12	65h	8
3	Guided experiments (part of 9TE11 and 9TE12)		28h	
4	Project with PRISME Lab	POLUP10	150h	15

PREREQUISITE

Knowledge in fluid mechanics, aerodynamics, signal processing, thermodynamics, acoustics, applied mathematics, computational fluid mechanics.

STUDENT OUTCOME

Aerospace, defense industry and energy sector

1) TURBULENCE AND ADVANCED CFD (47H)

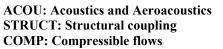
Unit	Courses	Hours
	Statistical modelling of turbulence (RANS)	5:00
	Physics of turbulence	5:00 5:00 6:15 5:00 11:30 5:00
	Large-eddy simulation	6 :15
Turbulence and	CFD Labs	5 :00
advanced CFD (9TE11 47h)	Experimental labs and signal analysis	11 :30
(912114/11)	CFD Project	5:00
	Conferences	5:00
	Tests	4 :15

2) MULTIPHYSICS COUPLING IN AERODYNAMICS (65H)

	Sources of noise	2:30
	Transmition/ reflection and impedance/reactance	2:30
	Linearised acoustics	5:00
	Helmholtz theory	2:30
Aeroacoustics	Ray tracing and the dispersion relation	2:30
(9TE12 26h15)	Lighthill theory	2:30
	Ffowcs Williams Hawking theory	2:30
	RANS modelling	2:30
	CFD project	2:30
	Tests	1:15
	Static divergence	1:15

Aeroelasticity	Aileron reversal	1:15
	Introduction to linear and non-linear stability	1:15
	Vortex-induced vibration	1:15
(9TE12 13h75)	Aeroelastic galloping	1:15
	Aerodynamic flutter	1:15
	Experimental labs and signal analysis	2:30
	CFD labs	1:15
	CFD project	2 :30
	Gradient Methods for large-scale optimization problems	1:15
	Static problems	1:15
	Dynamical systems	1:15
	Time-dependents PDE (1D)	1:15
Optimization in	Steady two-dimensional problems (2D)	1:15
aerodynamics	Navier-Stokes equations	1:15
(9TE12 15h)	Data assimilation	1:15
	Sensitivity methods and shape-optimisation	1:15
	CFD labs	2 :30
	CFD project	1 :15
	Tests	1 :15
	Use of the thermophysical properties of gases	2:30
Introduction to high-	Predict the reentry trajectory of simple objects	2:30
enthalpy flows	FORTRAN lab	2:30
(9TE12 10h)	Tests	2:30

3) GUIDED EXPERIMENTS (28 HOURS WITH TEACHERS + 30 HOURS IN AUTONOMY)


These guided experiments are dedicated to teaching experimental methods, simulations and physical analyses in aerospace engineering. They are provided for having hands-on practice and understanding theoretical concepts of aerospace dedicated courses.

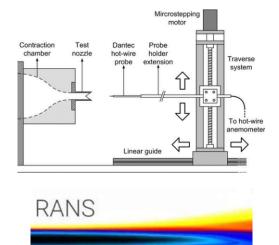
Each group of 2 to 4 students will work in teaching and research wind tunnels. Each project will last a day. They will be supervised by professors and a research engineer. One of the projects will be organized in the research facilities of the PRISME laboratory.

	JET	BF- RAMP	WING	JET	BF- RAMP	WING
		KAMI		,	KAM	
RANS	\checkmark	✓	✓	✓	✓	
LES	✓	✓			✓	
SIGNAL	✓	✓		✓	√	✓
BUDGE	✓	✓		✓	√	✓
Т						
ACOU	✓		✓			
STRUCT			✓			✓
OPTIM		✓	✓		√	
COMP	√			✓		
	Numerical simulations (FLUENT)				Wind tunne	1

Competences for each project:

RANS: Reynolds Averaged Navier-Stokes LES: Large-eddy simulation SIGNAL: Signal analysis OPTIM: Optimization methods

1. Self-similar analysis of a turbulent jet


The objective of this project is to analyze the behavior of a turbulent jet using both experiments and numerical simulations. The lab sessions comprise of traverse measurements obtained in the wind tunnel while numerical simulations are performed using the Fluent software package:

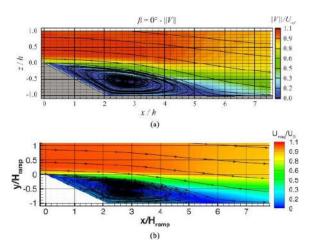
- Perform a statistical analysis of the data obtained from the hot-wire probe.

- Analyze the mass and momentum budget of the turbulent jet following different locations using the Reynolds-averaged approach.

- Provide a complete self-similar analysis of the turbulent jet.

- Perform the same analysis using the simulation software Fluent and analyze the differences between numerical simulations and experimental results.

Skills: Learn how to calibrate and perform measurements using a hot-wire anemometer. Collect and analyze point-wise measurements and profiles using MATLAB. Analyze the physical characteristics of the flow. Replicate the experiment in a simulation and provide a critical analysis of the results.

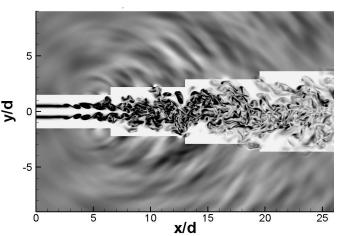

2. Separated flow over a slanted ramp (CFD vs. exp)

The objective of this project is to analyze the separated flow over a slanted 25° backward-facing step. This part combines lab experiments with Reynolds-averaged and Large-eddy numerical simulations of a turbulent flow using different

- Perform experiments and data collection from a research wind tunnel. Analyze pressure measurements, hot-wire, and particle image velocimetry data. Perform data analysis to identify the physical scales driving the problem.

- Learn how to accurately simulate this challenging flow problem and select the right Reynolds averaged turbulence model.

- Learn how to setup and run a large-eddy simulation and compare the data with the experiment and the RANS approach.



Skills: Conduct the analysis of a separated turbulent flow using planar measurements based on PIV and near-wall hot-wire measurements. Decide on the right scaling approach to diagnose the forces acting on the model. Select the appropriate tool for simulation. Diagnose the limits of the physical modelling approach, setup and analyze a state-of-the-art numerical simulation and assess the quality using laboratory experiments.

3. Noise simulations (jet/cavity/wing)

The objective of this project is to analyze the mechanisms leading to sound generation by different geometries and appropriately simulate the sounds pressure level in the case of a compressible flow over a jet or a cavity or a trailing edge.

Learn how to setup unsteady aeroacoustics simulations.
How to calculate the noise generated by these configurations.

Skills: Simulate and predict the sound generated by specific configuration.

4. Aerodynamic flutter analysis (exp. vs. CFD)

The objective is to model theoretically, simulate, and measure the flutter phenomena on a flexible wing. The theorical model derived in class is used to discriminate between aeroelastic galloping and the flutter phenomena. Hot-wire measurements and image analysis from a fast camera are used to obtain the amplitude and frequency of the oscillations which are finally compared with the theoretical model.

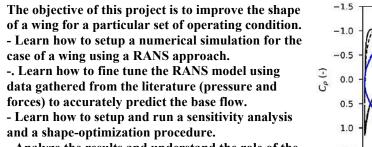
- Perform aeroelastic measurements on a structure in a wind tunnel.

- Data analysis from hot-wire anemometry and image analysis.

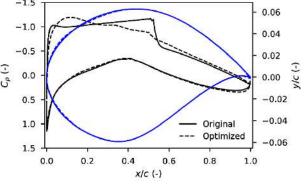
- Perform simulations using and Ansys and couple with Fluent to simulate fluid-structure interactions.

[s] Skills: Predict and anticipate the design of flexible structures such as airframes wind turbines, and more general structures.

155,1


125 ["zs/m] 100,

75,


50

25

5. Sensitivity analysis and shape optimisation (CFD)

- Analyze the results and understand the role of the shape modification on the flow.

Skills: Use the optimization modules in fluent based on the sensitivity of the adjoint equations.

4) <u>PROJECT WITH PRISME LAB</u> (15 ECTS)

Between September and December, each student joins a research team to work on a dedicated project in collaboration with PRISME lab/Polytech (e.g., physical analysis of turbulent shear flows, flow control, innovative surfaces, ...) At the end, the student must write a report and defend it orally.

4.16e-2

Other courses partially or fully taught in English at Polytech Orleans

Signification of the symbols

Proportion of teaching taught in English

D: materials provided in English, course taught in French

净净: 50% in English

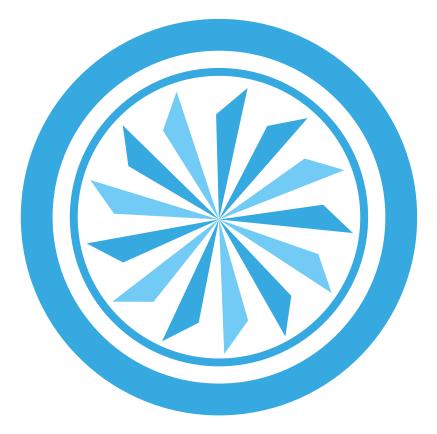
没净净: fully taught in English

Sustainable Development and Social Responsibility (SDRS)

(mentioned

(: issues visible in Teaching Unit (TU) competences

() () () (TU) : taking into account standards and regulations in the Teaching Unit (TU)


Support for innovation, business creation and takeover

i mentioned

PP : issues visible in Teaching Unit (TU) competences

PPP : mastery of standards and regulations in the Teaching Unit (TU)

Technologies for Energy, Aerospace and Motoring sciences (TEAM)

4th year / Master 1 courses

TU Code	Title of the Teaching Unit (TU)	Learning hours	ECTS
TECHNOLOGIES for ENERGY, AEROSPACE and MOTORING			60
SCIENCES (TEAM)			60
4th year TEAM 1st semester (September – January) S7			30
7HT02	English and science	40	3
7LVA1	Optional language (german)		2*
7LVE1	Optional language (spanish)		2*
7TE01	Energy Management	117,5	9
7TE02	Fluid dynamics		9
7TE03	Electrical engineering and automatic control		6
4th yea	239,5	30	
8HT01	Business English	40	4
8HT02	Human resource management	27,5	2
8TE01	Assistant Engineer Project	5	4
8TE02	Engine and propulsion systems	120	9
8TE03	Numerical and experimental tools for the engineer	45	4
8STT1	Professional experience	0	7

Technologies for Energy, Aerospace and Mot	oring 7HT02	Semester 7				
Sciences (TEAM)						
English and science						
Supervisor: Sybilla DUBOIS ECTS: 3						
Skills						
At the end of this course, engineering students will be a	ble to:					
 Practise communicating in English on a scier by visual means 	tific or technical subject, orall	y, in writing and				
Syllabus						
 Learn how to write a CV and cover letter in English by studying documents, the work of young engineers, as well as the websites of various companies in the field. Discuss an invention and how it works and its potential evolution 						
 Discuss and promote a product or gadget re 	 Discuss and promote a product or gadget related to your field of activity and/or write technical documentation corresponding to the project 					
 Study and understand audio and visual scientific documents related to their field of engineering; Express themselves orally and in writing: writing exercises and oral expression activities using technical and scientific structures and vocabulary 						
• Take part in discussions and/or debates on science, environment, climate, policy, etc.						
Final project: participate in a shared virtual	• Final project: participate in a shared virtual project using your area of expertise					
Grading						
Written exam, Oral exam						
Learning hours						
Lectures Tutorials Lab sessions 0h00 0h00 40h00	Free labs Project 0h00 0h00					
In person teaching: 40h00						
Taught in English:闷闷。 SD/SR:						

Technolo	ogies for Energy,	Aerospace and	Motoring	7TE01	Semester 7
Sciences	(TEAM)				
		Energy M	anagen	nent	
Supervis	or: Christian CAIL	LOL			ECTS: 9
Skills					
At the end	of this course, engin	eering students wi	ll be able to:		
•		s), whether for en	•	•••	(from conventional or or systems) or energy-
•	Apply the main prin	ciples of acoustic t	reatment to bu	ilding interiors or	noisy devices.
Syllabus					
The main	challenges for tom	orrow's energy a	nd renewable	e energies	
-	sources, final energy nal energy: sizing of o	· · · ·			act on the climate. Te cycle analysis. Bio-
Thermal c	design of buildings				
	ptimization of buildin air conditioning.	gs, thermal regula	tion RE2020. In	troduction to HV	AC engineering: air
Vibration	and acoustics				
	ng the vibration mode aves. Determining th	•			ion coefficients of ions to dampen them
Industrial	combustion				
stoichiome	and determination or etric combustion equation e		•		
Labs in en	nergetics				
	ent of flame front ve n. Study of the efficie		-	•	
Grading					
Written ex	am, Oral exam				
Learning	hours				
Lectur 55h0		Lab sessions 37h30	Free labs 5h00	s Project 0h00	
In person t	eaching: 117h30				
Taught in	English:խխ	SD/SR:		Innovation	

Technol	ogies for Energy, /	Aerospace and	Motoring	7TE02	Semester 7		
Sciences	(TEAM)						
	Fluid dynamics						
Supervis	or: Nicolas MAZEI	LIER			ECTS: 9		
Skills							
At the end	l of this course, engine	ering students wi	ll be able to:				
•	Understand the phys Being able to apply t			d heat transfer in	different regimes.		
•	Identify and classify their effects on aero			ed in aerodynami	cs and understand		
•	Learn about digital a able to choose the m experiment/simulati	ost suitable physi	cal models. Know				
Syllabus							
 Gas dynamics Reminder of the equations of motion and energy. Highlighting dimensionless numbers and the notion of similarity. Introduction to compressible flows in perfect fluid; isentropic relationships; shock waves; study of the Laval nozzle. Boundary layer Dynamic and thermal boundary layer theory, self-similar solutions and scaling laws. Dimensionless numbers characteristic of heat transfers. Reynolds analogy. External aerodynamics The main phenomena: attached and separated, 2D and 3D, subsonic and supersonic flows. Case of the profile and the wing in incompressible. Linearized potential in compressible; 2D sub and supersonic applications. Application to vehicles and energy systems. Turbulence Introduction to turbulence. Statistical approach through the Reynolds formalism (RANS). Highlighting the closure problem and introducing the turbulent viscosity model. Experimental practical work Getting started with measuring instruments in fluid dynamics. Development of a boundary layer. Laminar/turbulent transition. Simple body aerodynamics. Laval nozzle. Numerical practical work Simulation of turbulent flows on the ANSYS software suite. Getting started with simple cases. Wing profile from Mach 0.3 to Mach 3. Laval nozzle. 							
Grading							
Written ex	am, Oral exam						
Learning	hours						
Lectur 50h0	0 32h30	Lab sessions 35h00	Free labs 8h45	Project 0h00			
-	teaching: 117h30		٢	In	ØØ		
l aught in	i English: ԽԽ	SD/SR:	$\mathbf{\Psi}$	Innovation:	~ ~		

7TE03

Technologies for Energy, Aerospace and Motoring

Semester 7

Sciences (TEAM)

Electrical engineering and automatic control

Supervisor: Guillaume COLIN

ECTS: 6

Skills

At the end of this course, engineering students will be able to:

- Modeling 4 electrical machines by their equivalent schemes; associating loads to rotating machines by their mechanical characteristics; measuring electrical powers on networks with linear or non-linear loads; understanding the risks at low voltage below 500 V; implementing the 4 electrical machines; recording the mechanical characteristics of two rotating machines associated with their converter or scalar inverter
- Study of continuous linear dynamic systems and synthesizing equalizers; modeling and identifying a linear system from data; identifying the inputs and limitations of a closed-loop control system; adjusting and operating a PID, introduction to advanced industrial controls

Syllabus

Electrical Engineering

Active, reactive and deforming apparent powers on linear and non-linear loads; elements of magnetism applied to current transformers, linear inductances and no-load current of a voltage transformer; ferromagnetic losses and technological solutions. 4 electrical energy conversion machines. Transformer. DC machine, AC machines, synchronous and asynchronous.

Automatic control

Introduction and recaps: definitions, synthesis of a control system. Basic models and responses. Dynamic performance of corrected systems.

Continuous control: principles, role, effects and use. Synthesis of PID correctors: tuning, industrial structure. Delayed process, internal model control.

Labs

Three-phase power measurements and protection of persons; Three-phase transformer; Direct current machine; Asynchronous machine; Speed variation on an asynchronous machine; Synchronous machine and alternator starter test bench; PID regulation of the thermal behavior of a building.

Grading	Grading						
Written exam, Or	Written exam, Oral exam						
Learning hours							
Lectures 16h15	Tutorials 13h45	Lab sessions 37h30	Free labs 13h45	Project 0h00			
In person teaching: 67h30							
Taught in English:խխ		SD/SR:	۲	Innovation:	Ø		

Technologies for Energy	, Aerospace and Motori	ng 8HT01	Semester 8
Sciences (TEAM)			
	Business En	glish	
Supervisor: Isabelle BEN	CHAABANE		ECTS: 4
Skills			
At the end of this course, eng	ineering students will be able	e to:	
Use English in the	corporate world		
Reach the B2+ leve	el		
Syllabus			
1 - Business English			
Various activities involving the - Job interview simulations - Study of company organigra - Meetings and telephoning - "Project": Reading and study	ms, portraits of CEOs, manag	ement styles and corpora	
2 - TOEIC Preparation			
2 mock TOEICs. Revision of ke	y grammatical and lexical po	ints	
Grading			
Written exam, Oral exam			
Learning hours			
Lectures Tutorials 0h00 0h00		ee labs Project 0h00 0h00	
In person teaching: 40h00	40100		
Taught in English:┡┣Խ	SD/SR:	Innovation:	

Technologies for Energy, Aerospace and Motoring 8TE01 Semester 8 Sciences (TEAM) **Assistant Engineer Project** Supervisor: Ivan FEDIOUN ECTS: 4 Skills At the end of this course, engineering students will be able to: • Apply for an assistant engineer position (CV, cover letter, interview) Analyze a customer's needs and expectations and propose a suitable cost-effective solution Build on and consolidate the disciplinary skills acquired during the first two years of training to respond technically to the needs of the project Plan and optimize work (independently and as part of a team) in order to meet performance and meet deadlines **Syllabus** Project team recruitment Consult offers submitted by project managers Build your CV and cover letter accordingly Applying for jobs and preparing for interviews **Project Management** Introduction to the information retrieval tools required for project management Introduction to drawing up quotations and scientific technical appendices Introduction to audit principles Technical implementation support in collaboration with project managers Design and production of experimental and/or digital databases Contribute to writing technical reports Attendance at progress meetings Assessment of acquired skills (written + oral) Grading Thesis, Oral exam Learning hours Lectures Tutorials Lab sessions Free labs Project 0h30 3h45 86h15 0h00 0h45 In person teaching: 5h00 DD SD/SR: Taught in English: Innovation:

Technologies for Energy, Aerospace and Motoring 8TE02 Semester 8 Sciences (TEAM) **Engine and propulsion systems** Supervisor: Pierre BREQUIGNY ECTS: 9 Skills At the end of this course, engineering students will be able to: Understand the main parameters impacting the operation of an internal combustion engine • (ICE) • Carry out an analysis of the cimbustion process in an ICE Carry out the pre-sizing of an air breating or rocket propulsion system • Syllabus **Internal Combustion Engine** Thermodynamic cycles, efficiencies, energy calculation Study of the compression phase, assess wall heat losses, wall temperature, hypothesis & limits Heat Realease and Heat Release rate (HRR) calculation growth and net, wall heat losses, energy model closure HRR Wiebe model, premixed and diffusion combustion. Adjusting the model to fit experimental data Lab session on engine test benches **Aircraft and Rocket Propulsion** Main components, architecture, principles Thermodynamic and mechanical sizing of a turbojet/fan Performances calculation of rocket and aircraft engines Projetcts on a virtual engine test bench: control and thermodynamics Grading Written exam, Oral exam Learning hours Lectures Tutorials Lab sessions Free labs Project 0h00 61h15 6h15 52h30 18h45 In person teaching: 120h00 00 SD/SR: Innovation: Taught in English: 印印

Technologies for Energy, Aerospace and Motoring

Semester 8

8TE03

Sciences (TEAM)

Numerical and experimental tools for the engineer

Supervisor: Pierre-Yves PASSAGGIA

ECTS: 4

Skills

At the end of this course, engineering students will be able to:

 Select a particular type of sensor to measure a specific type of physical phenomenon. Perform the acquisition and visualisation of a signal from an experiment. Numerical analysis of different signals (statistics, spectral analysis, filtering) Interpolate, approximate and integrate multivariate functions. Perform optimisation methods to determine local and global minima using simplex and Lagrange multipliers methods.

Syllabus

Signal acquisition and processing

- Signal processing: Fourier analysis, auto- and cross-correlations, Parseval and Wiener theorem, introduction to wavelets.

- Lab sessions using Matlab: Acquisition, and visualisation of a signal using a microphone. Processing and analysis from acoustics, engines, and fluid mechanics.

- Sensor technology and acquisition methods.

Interpolation and filtering

- Interpolation, nodal approximation, polynomial expansions, spline methods.
- Numerical integration.
- Least-squares methods.

Optimisation

- Local and global minima analysis of multivariate functions.
- Constrained optimisation.
- Lagrange multipliers method.

Grading					
Written exam, Oı	ral exam				
Learning hours					
Lectures 16h15	Tutorials 0h00	Lab sessions 28h45	Free labs 6h15	Project 0h00	
In person teaching: 45h00					
Taught in English:խው		SD/SR:		Innovation:	

5th year / Master 2 courses

TU Code	Title of the Teaching Unit (TU)	Learning hours	ECTS
TECHN (TEAM	OLOGIES for ENERGY, AEROSPACE and MOTORING SCIENCES)	732,50	60
5th ye	ear TEAM 1st semester (September- December) S9	282,50	30
1 English Te	aching Unit according to validated TOEIC level		
9HT02	Intercultural communication	22,5	2
9HT03	Intercultural communication debating society	10	2
9LVA1	German (not for beginners)	28	2*
9LVE1	Spanish (not for beginners)	28	2*
2 Teaching	Unit amongst 5		
9TE11	Turbulence and advanced CFD	70	8
9TE12	Multiphysics coupling in aerodynamics	70	8
9TE13	Combustion and applications	70	8
9TE14	Control of Energetic System	70	8
9TE15	Energetic systems	70	8
To be chose	en according to status		
9TE16	Engineer project - phase 1	100	9
5th ye	ear TEAM 2nd semester (January – September) S10	450	30
To be chose	n function of S9	-	
AHT01	Operational management	36,25	2
ATE05	Engineer project - phase 2	70	3
1 Teaching	Unit amongst 3		
ATE02	Gas dynamics	70	5
ATE03	Powertrain	70	5
ATE04	Buildings energy	70	5
ATE06	Engineer project	170	10
ASTE1	Engineer intership	0	20

Technologies for Energy, Aerospace and Motoring 9TE11 Semester 9 Sciences (TEAM) Turbulence and advanced CFD ECTS:8 Supervisor: Ivan FEDIOUN Skills At the end of this course, engineering students will be able to: Describe, understand, and analyse turbulent flow phenomena. Use the necessary tools for the analysis of experimental databases and numerical simulations. Select and perform different levels of descriptions/physical modelling (ILES, LES, DES, RANS) upon available computing resources. Use the ANSYS/FLUENT software suite for the simulation of turbulent flows and their optimisation. **Syllabus Experimental labs and signal analysis** Grid and jet turbulence, hot-wire measurements - Signal analysis of experimental data (spectral analysis, first-to-fouth order statistical moments). Analysis of PIV databases (provided by the professor). Statistical modelling of turbulence (RANS) Statistical tools - Reynolds- Averaged Navier-Stokes equations - Closure problem and solutions -Transport equations of turbulent quantities - Newtonian closure and its consequences - Turbulent viscosity models - Wall laws. Physics of turbulence One-point/two-point statistics - Eulerian microscales integral lengthscales - Energy and enstrophy spectra in homogeneous and isotropic turbulence - Kolmogorov theory (K41). Large-eddy simulation Explicit and implicit filtering - Filtering induced by the numerical scheme - Sub-grid scale modelling for large-eddy simulations. CFD Labs RANS and LES simulations, shape and turbulence model optimisation. Grading Written exam, Oral exam Learning hours Lectures Tutorials Lab sessions Free labs Project 28h45 0h00 10h00 31h15 0h00 In person teaching: 70h00 Ø SD/SR: Taught in English: 印印 Innovation:

Technologies for Energy, Aerospace and Motoring Sciences (TEAM) 9TE12 Semester 9

Multiphysics coupling in aerodynamics

Supervisor: Pierre-Yves PASSAGGIA

ECTS: 8

Skills

At the end of this course, engineering students will be able to:

• Describe fundamental physical phenomena associated with aeroacoustics (aerodynamic noise), aeroelasticity (fluid-structure interaction), and high-speed flows (where high enthalpies are reached).

Syllabus

Aeroacoustics

General concepts of aerodynamic noise, fields of application, sound propagation in the presence of flow in an inhomogeneous medium, methods for calculating radiated noise, noise sources, interaction between flow and acoustics

Aeroelasticity

Description and analysis of steady and unsteady aerodynamics coupled to deformable structures, key physical characteristics of the statics and dynamics of objects (airfoils, wings, building), subject to elastic, inertial, and aerodynamic forces, at the origin of static divergence and aerodynamic flutter:

High-speed aerodynamics

Description, analysis, and simulation of very high-speed flows where heating effects dominate aerodynamics, for instance, during reentry flight phases and hypersonic flight regimes.

Adjoint-based sensitivity analysis

Mathematical techniques for Lagrangian-based sensitivity analysis of physical models towards optimisation and flow control. Mathematical analysis of sensitivity equations for optimisation and physical analysis. Application to static, dynamic, nonlinear and 3D unsteady problems. Shape and turbulence models optimisation.

Grading

Taught in Englis	։ի։ թթթ	SD/SR:		Innovation:	000	
In person teaching: 70h00						
Lectures 27h30	Tutorials 42h30	Lab sessions 0h00	Free labs 6h15	Project 0h00		
Learning hours						
Written exam, Oral exam						

Technologies for Energy, Aerospace and Motoring Sciences (TEAM) Semester 9

9TE13

Combustion and applications²

Supervisor: Christine MOUNAIM-ROUSSELLE

ECTS:8

Skills

At the end of this course, engineering students will be able to:

- Acquire the requisite knowledge to describe, understand and analyze laminar and turbulent combustion phenomena involving in industrial applications
- Know the basic mechanisms determining the formation and reduction of pollutant emissions
- Identify parameters influencing heat release and the formation of the main pollutants (soot, NOx) for applications such as internal combustion engines, thermal power plants (coal, gas, biofuels) and turbines. Know how to vary parameters to optimize the working of the energy system
- Use CFD software to simulate a complex system
- Acquire an overview of the tools allowing characterizing a reactive or non-reactive turbulent flow (measurement techniques and post-processing tools).

Syllabus

Theory

Combustion chemistry (thermodynamics applied to chemistry, chemical kinetics) ; Self-ignition (theory, measurement methods, examples of detailed modeling) ; Premixed and diffusion flames (flammability limit, flame stabilization, extinction parameters, propagation velocity, flame thickness, ...) ; Flame/turbulence interactions ; Models for premixed and diffusion turbulent flames ; Combustion highenergy materials and explosives ; Pollutant formation and post-treatment systems ; Examples of combustion phenomena and pollutant formation with recent technologies ; Introduction to experimental techniques allowing to characterize a reactive or non-reactive turbulent eddy flow

Practice

Use of Image processing (Matlab); Use of CHEMKIN software (chemical kinetic) ; Application of notions tackled through 3D calculation codes (FLUENT or CONVERGE)

Autonomous supervised project

Students will work by group on a project dedicated to the description and the understanding of an accidental combustion phenomenon ; A guided project devoted to the characterization of acoustically perturbed flames using post-processing tools will be proposed.

Grading								
Written exam, Or	Written exam, Oral exam							
Learning hours								
Lectures 37h30	Tutorials 3h45	Lab sessions 28h45	Free labs 2h30	Project 0h00				
In person teaching: 70h00								
Taught in Englis	sh: ԹԹ	SD/SR:		Innovation:	L.			

Technologies for Energy, Aerospace and Motoring 9TE14 Semester 9 Sciences (TEAM) **Control of Energetic System** Supervisor: Guillaume COLIN ECTS: 8 Skills At the end of this course, engineering students will be able to: Master engine control systems, control strategies and the associated control devices (sensors, actuators, controllers); Implement control strategies for internal combustion engines; Apply the knowledge acquired in class to the tuning and control of internal combustion engines on a test bench, an actuator bench or via simulation; Perform energy balance on a hybrid vehicle and generate an energy management strategy (heuristic, optimal). **Syllabus** Theory • History of engine control: carburetor, mechanical injection State of the art: sensors, actuators, hardware and software, strategies... Spark ignition engine control: basic strategies, pollution, knock, idle, start, cold start, drivability... Diesel engine control: history, high pressure pumps and injectors, common rail control Control Development methods. Embedded networks. Embedded models Automatic control: PID control and advanced control. Control based on physical or heuristic models, torque control. Hybrid vehicles: definitions, issues, energy management (heuristic, optimal, Equivalent Consumption Minimization Strategy) Practice Tuning an internal combustion engine: 3 labs including 2 on a real engine test bench Engine control: 3 labs, 1 of which on an actuator bench system and 1 on a real engine test . bench Energy management of an hybrid vehicle (1 lab on a roller bench) Mini-project Pre-sizing the technical elements of an Hybrid Electric Vehicle and designing the energy management with the softwares Amesim and Simulink. Grading Written exam, Oral exam Learning hours Lectures Tutorials Lab sessions Free labs Project 17h30 0h00 52h30 28h45 0h00 In person teaching: 70h00 PP ۲ Taught in English: 印印 SD/SR: Innovation:

Technologies for Energy, Aerospace and N	lotoring	9TE15	Semester 9
Sciences (TEAM)			
Eneraeti	c systems		
-	,		
Supervisor: Camille HESPEL			ECTS: 8
Skills			
At the end of this course, engineering students will	be able to:		
Size of power generation systems			
 Apply the concepts of security and nucle 	•		
Use business software to perform a life of the second	ycle analysis		
Syllabus			
Energy geopolitics			
• Situation and issues: primary energy, eq	CO2 emissions, sta	ndard, 1.5°C obje	ective
• Energy mix: nuclear, renewable energy, o	other		
Role of new energy carriers: hydrogen, a	mmonia		
Renewable energies			
Photovoltaics: technology and sizing			
• Wind power: technology and sizing			
• Solar thermal: technology, sizing and ret	urn on investment		
Advanced thermodynamics			
• Joule cycle and cogeneration			
Rankine cycle with or without superheat	:		
Life cycle analysis			
• Introduction to software (Gabi, simapro	or greet)		
Compare different scenarios			
Visit to a plant or company			
Sites already visited: nuclear and thermal power pla refinery, La Renardière site (EDF), photovoltaic plan			nay sugar
Grading			
Written exam, Oral exam			
Learning hours			
Lectures Tutorials Lab sessions	Free labs	Project	
50h00 20h00 0h00	11h15	0h00	
In person teaching: 70h00			
Taught in English:ጮጮ SD/SR:		Innovation:	00

Technolo	gies for Energy, A	erospace and M	otoring	9TE16	Semester 9
Sciences	(TEAM)				
	Eng	jineer pro	ject - ph	ase 1	
Supervis	or: Ivan FEDIOUN				ECTS:9
Skills					
At the end	of this course, engined	ering students will	be able to:		
•	Conduct an engineeri	ng project to answe	er an industrial o	r research prob	lem.
٠	Develop, consolidate,	and apply the skill	s developed dur	ing the enginee	ring curriculum.
•	Establish technical sp	ecifications, and ma	anagement plans	s, and work aut	onomously.
•	Regular follow-up me	eting organisation	with the industri	ial/academic pa	rtners.
٠	Syntethise work prog	ress and deliver bot	th presentations	and written rep	oorts.
Syllabus					
Project Ph	ase 1				
•	Project selection.				
•	Contact the industrial study.	or academic partn	er and establish	the technical sp	ecifications of the
•	Tasks and meeting pla	inning.			
٠	Tools and resource ide	entifications that a	e required to ac	complish the ta	sks.
•	Risk and alternative s	olutions planning.			
•	Technical work realisation	tion for each task.			
•	Update on work adva	ncement, providinန္	g backup solution	ns when necess	ary.
Grading					
Thesis, Ora	l exam				
Learning l	hours				
Lecture	es Tutorials	Lab sessions	Free labs	Project	
0h00		0h00	1h15	0h00	
	eaching: 12h00				PPP
Taught in	English:ԽԽԽ	SD/SR:		Innovation:	000

Technologies for Energy, Aerospace and Moto	ing ATE02 Semester 10			
Sciences (TEAM)				
Gas dyna	mics			
Supervisor: Azeddine KOURTA	ECTS: 5			
Skills				
At the end of this course, engineering students will be ab	le to:			
 Have acquired a comprehensive understandin at speeds ranging from high subsonic to hyper 	sonic.			
 Understand the mathematical properties of Euler's equations (hyperbolicity, characteristics) in numerical shock-capture schemes (FVS, FDS). The main schemes. Initiation into FORTRAN programming. 				
Syllabus				
Part 1: Dynamics of high-speed				
Recap of the 4th year course on thermodynar	nics, the Euler system, straight shocks			
 1D instationary flows: characteristics, Rieman Riemann problem 	n invariants, shock tube; solution to the			
 2D stationary flows: oblique shocks, intersect Prandtl-Mayer equation, Linearized supersoni 	•			
Part 2: Numerical methods to solve Euler's equatior	S			
 Scalar hyperbolic conservation equations: cha monotone conservative schemes. Weak solutions 	racteristics and compatibility relation, ons and Rankine-Hugoniot condition. Entropy			
 Recap on the Euler 1D system: conservative va matrices, Riemann invariants 	riables, primitives, characteristics, transition			
 First-order 'upwind' finite-volume schemes ba approximate Riemann solvers (FDS) 	sed on flow decomposition (FVS) and			
Second-order extension: MUSCL approach, TV	D schemes and flow limiters			
Part 3: Machine applications in FORTRAN				
• Linear convection: programming, managemer	t of the boundary conditions			
 Burgers' equation: Riemann problem with cor Programming Lax-Friedrichs schemes and CIR 				
 The Sod shock tube with fixed boundary cond boundary conditions. Roe scheme with Harter 				
Grading				
Written exam				
	ree labs Project			
25h00 45h00 0h00 In person teaching: 70h00	12h30 0h00			
Taught in English:泡泡泡 SD/SR: O	Innovation:			

Technologies f	or Energy, Ae	erospace and N	lotoring	ATE03	Semester 10	
Sciences (TEAN	1)					
		_				
		Powe	rtrain			
Supervisor: Pas	scal HIGELIN				ECTS: 5	
Skills						
At the end of this o	course, enginee	ring students will	be able to:			
 Understand physical and chemical processes during combustion and scavenging in internal combustion engines. 						
	 Understand the reactions of a powertrain when changing its operating parameters using modeling. 					
 Build an internal combustion engine model. Optimise powertrain sizing and settings under efficiency, power output and emission constraints. 						
 Unders 	tand electrified	powertrain energ	y management			
Syllabus						
Combustion						
Thermochemistry aerodynamics. Air,	-				-	
Thermodynamic	-		-			
Classification of th losses to the walls	ermodynamic r	nodels. Validity lir	nits. One zone, 2	zones and multize	one models. Heat	
Combustion mod	dels					
Semi-empiric Vibé models in compres			lels in spark igniti	on engines. Physi	ical combustion	
Turbocharging						
Static and dynamic	c turbocharger i	models. Compress	or / turbine adap	tation. Pumping	limit.	
Electrification						
Global characterist energy manageme				lit hybridization. I	Batteries and	
Grading						
Written exam, Ora	l exam, Report					
Learning hours						
Lectures 22h30	Tutorials 42h30	Lab sessions 0h00	Free labs 0h00	Project 5h00		
In person teaching	;: 70h00					
Taught in Englisl	ի։ թթթ	SD/SR:		Innovation:	ØØ	

Technologies for Energy,	, Aerospace and Mo	toring	ATE04	Semester 10
Sciences (TEAM)				
	Buildings	energy	,	
Supervisor: Jean-Michel	FAVIE			ECTS:5
Skills				
At the end of this course, engi	neering students will be	able to:		
	sional elements (humar d in renewable energy a	• •		of a project
•	ent norms, state of the a ion techniques, and env	•		
Syllabus				
Environnemental norms, re	glementations and re	equirements		
Thermal control, durable archi life cycle analysis.	-	-	ent. Environme	ntal footprint and
Audit and thermal diagnos	tics			
Environmental audit, energy-p assistant and eco-friendly imp	•	, carbon footpr	int budget. Proj	ect management
Passive energy				
Classical and bio-sourced mate	erials. Architecture, scre	ens, waterspou	t wall.	
Renewable energies				
Solar-thermal heating, wind tu	urbines, geothermal and	l bio-mass, ene	rgy mix.	
Heat exchangers				
Wood energy and heat pumps				
Grading				
Written exam, Oral exam, Rep	ort			
Learning hours				
Lectures Tutorials	Lab sessions	Free labs	Project	
40h00 26h15	3h45	29h00	0h00	
In person teaching: 70h00				PPP
Taught in English:ԽԽԽ	SD/SR:		Innovation:	~ ~ ~

Technologies	for Energy, A	erospace and N	lotoring	ATE05	Semester 10
Sciences (TEA	M)				
	Eng	ineer pro	ject - ph	ase 2	
Supervisor: lv	an FEDIOUN				ECTS:3
Skills					
At the end of this	s course, enginee	ring students will	be able to:		
Cond	uct an engineerir	ng project to answ	er an industrial	or research prol	olem.
• Deve	lop, consolidate,	and apply the skil	s developed du	ring the enginee	ering curriculum.
 Estab 	lish technical spe	cifications, and m	anagement plar	is, and work aut	onomously.
 Regul 	ar follow-up me	eting organisation	with the indust	rial/academic pa	artners.
 Synth 	ethise work prog	gress and deliver b	oth presentatio	ns and written r	eports.
Syllabus					
First part : corre	esponds to "Pha	ase 1"			
Second part : Ta	asks completio	n, presentations	and deliverab	les	
 Team allocation 	•	Ith year students),	presentation of	the previous w	ork done and tasks
Techr	nical work realisa	tion.			
 Upda 	te on the advanc	ement of the proj	ect with backup	solutions if nec	essary.
Delive	erables including	the final report a	nd oral presenta	tion of the final	product/results.
Grading					
Thesis, Oral exan	n				
Learning hours					
Lectures 0h00	Tutorials 10h00	Lab sessions 0h00	Free labs 3h45	Project 0h00	
In person teachin	ng: 10h00	•	·	•	
Taught in Engli	sh: ԽԽԽ	SD/SR:	**	Innovation:	000

Automotive Engineering for Sustainable Mobility (AESM)

TU Code	Title of the Teaching Unit (TU)	Learning hours	ECTS
AUT	OMOTIVE ENGINEERING for SUSTAINABLE		
MOE	BILITY (AESM)	664	60
1st y	ear AESM - Semester 1	347	30
1AE01	Trends in Automotive Transportation and Sustainable Mobility	10	1
1AE02	Scientific pre-requisite	50	5
1AE03	Electrical engineering	50	5
1AE04	IT: programming	50	5
1AE05	Advanced physics	50	5
1AE06	French culture and language	70	4
One Teac	hing Unit of your choice according to option ECM or VDIV		
1AE07	Vehicle Dynamics 1	65	5
1AE08	Internal combustion engines	65	5
1st y	ear AESM - Semester 2	317	30
2AE01	Acquisition systems and signal processing	50	5
2AE02	Real Time Programming	50	5
2AE03	Control and simulation of powertrains	35	5
2AE04	Project	130	10
One Teac	hing Unit of your choice according to option ECM or VDIV		
2AE05	Control and on-board diagnostics applied to internal combustion engines	50	5
2AE06	Control and on-board diagnostics applied to vehicle dynamics	50	5

Automotive Engineering and Sustainable Mo (AESM)	obility 1AE	01 Semester 1
Trends in Automotive	Transport	ation and
sustainable	Mobility	
Supervisor: Luis LE MOYNE		ECTS: 1
Skills		
At the end of this course, engineering students will be	able to:	
 Understand transport geo-politics. 		
• Understand the inventory of resources.		
Recognize operational actors in the transpo	ort sector.	
Syllabus		
Sustainable mobility.		
Environmental incentives.		
Well-to-wheels CO2 analysis.		
 Areas for technology improvements. 		
Grading		
Written exam		
Learning hours		
Lectures Tutorials Lab sessions	Free labs	Project
10h00 0h00 0h00	1h15	0h00
In person teaching: 10h00		
Taught in English:ኬኬኬ SD/SR: 🤇	🐨 Inno	vation:

Automotive Engineering and Sustainable Mobility (AESM)	1AE02	Semester 1
Scientific pre-requ	isite	
Supervisor: Meryem JABLOUN		ECTS: 5
Skills		
At the end of this course, engineering students will be able to:		
 Acquire skills and an understanding of mathematical to exploring characteristics of linear systems. 	ools necessary for	r studying and
Syllabus		
Fourier series decomposition		
Perform Fourier Series decomposition on continuous-time periodi phenomenon	c signals and und	erstand Gibbs
Linear differential equations		
Solve linear differential equations: 1st and 2nd order cases: illustrasystems	ation and applicat	tion to physical
Grading		
Written exam		
Learning hours		
LecturesTutorialsLab sessionsFree labs28h4521h150h001h15	Project 0h00	
In person teaching: 50h00	·	
Taught in English:խթթ SD/SR:	Innovation:	

Automotive Engineering and Sustainable Mobility	1AE03	Semester 1		
(AESM)				
Electrical enginee	ring			
Supervisor: Emmanuel BEURUAY		ECTS: 5		
Skills				
At the end of this course, engineering students will be able to:				
 Understand electrical and magnetism principles occurring parts: electrical motors and the dedicated converters. 	ing in electrical mo	tors divided in two		
 Understand the inner working of continuous and synch 	ronous motors.			
 Quantify the electrical efficiencies using active power, r power, distortion power and power factor. 	eactive power, app	parent		
Syllabus				
 Power: quantifying yields and efficiencies. 				
 Active, reactive, apparent, distortion power, power factive 	tor.			
• Three phased system grid.				
Harmonic aspects in power and electromagnetic pollut	ion.			
 Magnetism applied to electrical motors. Loss reduction synchronous machines. 	in permanent mag	gnet rotors of		
• Continuous motors and AC/DC, DC/DC converters integrated power electronics. Step down and the step up chopper structures.				
 Synchronous motors in servo synchronous machines w converter. 	ith Pulse Width Mo	odulator frequency		
• Four practical sessions illustrate three kinds of motors a	and transformer ne	eded in industrial		
processes.				
Grading				
Written exam, Oral exam				
Learning hours				
LecturesTutorialsLab sessionsFree labs13h4510h0026h150h00	Project 0h00			
In person teaching: 50h00				
Taught in English:┡/b/b/b SD/SR: 🕐 🐨	Innovation:	ØØ		

Automotive Engineering and Sustainable Mobility	1AE04	Semester 1
(AESM)		
IT: programmir	าต	
···· p··· · j· ·····	- 3	
Supervisor: Rachid JENNANE		ECTS: 5
Skills		
At the end of this course, engineering students will be able to:		
Analyze a problem		
Propose an algorithm		
 Develop an architecture for a problem 		
 Use a development environment and a C/C++ compile 	r	
Syllabus		
Basics		
 Structure of a program in C language 		
 Basic elements (character, type, constants, variables, l 	blocs, etc.)	
 Instructions and Operators 		
 Conditional structures, iterative structures and connect 	ctions, etc.	
 Pointers and dynamic variables 		
Arrays		
Strings		
• Functions, passing parameters: by value, by reference	and by address	
Object oriented programming		
 Structure of a program in C++ language 		
Classes		
 Member variables and member functions 		
Specialized constructors		
 Overloaded functions and operators 		
Data stream		
Abstract class		
Generic classes		
Grading		
Written exam		
Learning hours		
Lectures Tutorials Lab sessions Free labs		
16h15 0h00 33h45 0h00	0h00	
In person teaching: 50h00		
Taught in English:ԽԽԽ SD/SR: 🏵	Innovation:	la l

Automotive Engineering and Sustainable Mobility	1AE05	Semester 1
(AESM)		
Advanced physi	cs	
Supervisor: Azeddine KOURTA		ECTS: 5
Skills		
At the end of this course, engineering students will be able to:		
Understand the inner working of power electronics		
Understand basic automotive aerodynamics		
Solve 1st and 2nd principle based thermodynamic pro	blems	
Syllabus		
Power electronics		
Semi-conductor physics		
Power MOS		
• IGBT		
Automotive aerodynamics		
Basics of aerodynamics		
Specificities of automotive aerodynamics		
Wind tunnel experiments		
Thermodynamics		
• 1st and 2nd principle of thermodynamics		
Ideal gases		
Basic engine cycles		
Grading		
Written exam, Report		
Learning hours		
Lectures Tutorials Lab sessions Free labs		
32h30 13h45 3h45 0h00	0h00	
In person teaching: 50h00		Ø
Taught in English:阳阳 SD/SR:	Innovation:	a.

Automotive E	ngineering an	d Sustainable M	lobility	1AE06	Semester 1
(AESM)					
	Frenc	h culture:	and lan	guage	
Supervisor: G	eanina BOUTC	NNE			ECTS: 4
Skills					
At the end of this	s course, enginee	ring students will be	e able to:		
 Unde 	rstand spoken fre	nch and speak basi	c sentences.		
 Read 	and write basic fi	ench.			
Hold :	a basic conversat	ion.			
Syllabus					
Frence	h language sound	ls			
Frence	h grammar				
Frence	h conjugation				
• Intera	active discussions	in French			
Grading					
Written exam, O	ral exam				
Learning hours					
Lectures	Tutorials	Lab sessions	Free labs	Project	
0h00	70h00	0h00	0h00	0h00	
In person teachir	ng: 70h00				
Taught in Engli	sh:	SD/SR:		Innovation:	ØØ

Automo	tive Engineering a	nd Sustainable N	Aobility	1AE07	Semester 1
(AESM)					
		Vehicle Dy	vnamice	: 1	
		Venicie Dy	,	, ,	
-	or: Pascal HIGELIN	1			ECTS: 5
Skills					
At the end	of this course, engine	ering students will b	e able to:		
•	Understand vocabula to passenger cars.	ry, technology and g	eneral issues a	nd goals of vehi	icle dynamics applied
•	Choose and model a a according to an expe	-			-
•	Model the behavior of world test measurem	•	numerical mo	dels, and compa	are them to real
•	Conduct experimentation of the geom			•	
Syllabus					
•	Generalities: SAE Coc Basic	ordinate System. Defi	inition of speci	fic vocabulary. N	Motion variables.
	geometry of an Axle	toe, caster, camber,	kingpin etc.) a	ind its effect on	drivability.
•	Tire: Constitution and torque. Pacejka Mod		•		ling. Auto- align
•	Axle: Kinematics mod steer and roll propert and length (toe, cam	ties. Analysis of the o	design effects o	on the change of	characteristic angles
•	Vertical behavior and un-sprung mass cont				sign for sprung mass,
•	Transversal Behavior: Over steer coefficient Flexibility. Lateral Loa	, characteristic spee	d, yaw speed g	• •	•
•	Numerical simulation Thesis).	is and comparison to	o real test resul	ts using several	models (Simulink,
•	Practical work 1: Expo camber and steering			eling of the kine	matics roll effects on
٠	Practical Work 2: Exp on the geometrical cl				
Grading					
Written ex	am, Oral exam, Repor	t			
Learning					
Lectur 35h0		Lab sessions 7h30	Free labs 0h00	Project 0h00	
In person t	teaching: 65h00	•		•	
Taught in	English:ԽԽԽ	SD/SR:	۲	Innovation:	ØØ

Automo (AESM)	tive Engineering a	ind Sustainable	Mobility	1AE08	Semester 1
	Inte	rnal comb	ustion e	engines	
Supervi	sor: Pascal HIGELIN	N			ECTS: 5
Skills					
At the end	d of this course, engine	ering students will	be able to:		
•	Understand the phys scavenging in interna changing its settings	I combustion engin			
•	Be able to build an ir settings of an engine modeling.				
Syllabus					
•	Combustion: Thermo Premixed flames, fla flames, biphasic com requirements of spar (definition of core bu manufacturers needs fundamentals.	mmability limits, fla bustion. Internal a k ignition and self- Irning speeds), forr	ame stability, tu erodynamics of ignition, initiati	irbulent combus an engine. Mixt on and propagat	tion. Diffusion ure preparation, ion of combustion
•	Thermodynamic mod two zone models, mo validity.		•		ycle models, one and models. Limits of
•	Combustion models: engines. Extension to engines. Combustion models in the premix and diffusion	o compression ignit models for compr	ion engines. Co	mbustion model	s for spark ignition
•	Scavenging models: f conditions: open tub and friction to the way Specific Tool: Matlab	ing, closed, partial alls. Filling efficiend	y open junctior y curves recons	s. Consideration	
Grading		,,,	.,		
-	kam, Oral exam, Repor	t			
Learning		-			
Lectu 16h1	res Tutorials 5 41h15	Lab sessions 7h30	Free labs 0h00	Project 0h00	
	teaching: 65h00 ነ English:ውውው	SD/SR:		Innovation	ØØ
raughtin	I FIIAII2IIIIIOIOIO	50/511.		movation	,

Automotive Engi	neering a	nd Sustainable M	obility	2AE01	Semester 2
(AESM)					
Acqui	isition	systems ai	nd sign	al proc	essing
Supervisor: Philij	ope RAVIE	R			ECTS: 5
Skills					
At the end of this cou	urse, engine	ering students will be	able to:		
Mastering	g Analog to I	Digital conversion for	digital system	s	
Mastering	g the Fourie	Transform for spectr	al analysis of t	he data	
 Selecting architecture 	•	enting an FIR or IIR fil	ter on a dedic	ated hardware	e or software
Syllabus					
Signal processing l	oasics				
 Analog ar 	nd digital rep	resentation, Shannor	n theorem		
 Time and 	frequency r	epresentation			
Fourier tr	ansform				
 Noise pro 	cessing				
Digital filtering					
 Z transfor 	m for digita	signals			
Transvers	e filters				
Recursive	filters				
Grading					
Written exam					
Learning hours					
Lectures	Tutorials	Lab sessions	Free labs	Project	
20h00	20h00	10h00	0h00	0h00	
In person teaching: 5					
Taught in English:	ծթթ	SD/SR:		Innovation	:

Automotive Engineering and Sustainable Mobility	2AE02	Semester 2
(AESM)		
Pool Timo Program	mina	
Real Time Program	ming	
Supervisor: Raphaël CANALS		ECTS: 5
Skills		
At the end of this course, engineering students will be able to:		
 Mastering techniques for the implementation of digita 		
Understanding and implementing hardware and softw	-	stems
Controlling the CAN and FlexRay communication buses	•	
Syllabus		
Digital systems		
• Number coding and algebra.		
 Analog-to-digital and digital-to-analog conversions. 		
Electronic components		
Microcontrollers: applications in automobile.		
Microcontrollers: structure and implementation. Architecture of a microcontroller board.		
Role and place of an OS on a processor board.		
Architecture of an OS.		
Calls to OS functions.		
Automotive communication buses		
CAN and FlexRay buses architecture. Communication protocols.		
Grading		
Written exam		
Learning hours		
LecturesTutorialsLab sessionsFree labs17h3010h0015h003h45	Project 7h30	
In person teaching: 50h00		
Taught in English:խխխ SD/SR:	Innovation:	

Automotive Engineering and Sustainable M	obility 2/	AE03	Semester 2
(AESM)			
Control & Simulation	on of Pow	ertrain	s
Supervisor: Alain CHARLET			ECTS: 5
Skills			
At the end of this course, engineering students will be	able to:		
Understanding why and how hybridization	works		
 Understanding where energy is lost in a ca 	r vs driving conditi	ons	
Being able to build a simple model of a car	and its control		
Syllabus			
Part 1: Control of powertrains			
Anti-lock Bracking System (ABS) & Cruise control. This software Matlab/Simulink.	study is performe	d in simulation	with the
Part 2: Simulation of powertrains			
An overview of electric hybrid powertrains is propose Then, students work on a simulation platform (Simcer build an energy balance of a conventional vehicle. This study is completed by two practical classes on a r performances of a conventional car vs hybrid car (Toy	iter AMESim by Sie	-	-
Grading			
Written exam, Oral exam			
Learning hours			
LecturesTutorialsLab sessions5h0022h307h30	Free labs 0h00	Project 0h00	
In person teaching: 35h00	ln		ØØ
Taught in English:ቅቅቅ SD/SR: 🤇	in In	novation:	~ ~

Automotive Engineering and Sustainable Mo	bility 2AE04	Semester 2
(AESM)		
Proje	ct	
Supervisor: Pascal HIGELIN		ECTS: 10
Skills		
At the end of this course, engineering students will be a	ble to:	
• Split a complex task into subtasks. Plan and	schedule tasks.	
 Work as a group. Assign tasks to members o 	the group taking dependen	cies into account
• Select the more adequate modeling level an	d simulation tool	
Present work performed in a concise way for	cusing on the most importan	t aspects
Build working powertrain and vehicle dynam	ics models based on experim	nental data
Syllabus		
 Reformulation of project subject 		
 Split subject objectives into tasks and sub-ta 	sks	
 Schedule tasks and assign them to project m 		
 Report work performed, current state and u 		
		•
Grading		
Thesis, Oral exam		
Learning hours	I	
Lectures Tutorials Lab sessions	Free labs Project	
0h00 0h00 0h00 0h00	3h00 130h00	
In person teaching: 130h00		
Taught in English:ውውው SD/SR:	Innovation:	

Automotive Engineering and Sustainable Mobility (AESM)	2AE05	Semester 2
Control and on-board diagno	osis applied	to ICE
Supervisor: Guillaume COLIN		ECTS: 5
Skills		
At the end of this course, engineering students will be able to:		
• Find the good set of parameters for a PID controller	on simple systems	
Tune an internal combustion engine control		
Control some simple actuators		
Define, parameterize and implement a simple obser	ver-based diagnosis to	ol
Syllabus		
State of the art of engine control: sensors, actuators		
Gasoline engines		
Diesel engines		
Automatic control		
• Linear Models (1st order, 2nd order)		
Conventional Linear Control (PID)		
Applications to powertrain control: labs		
 Experimental engine test benches: tuning and contr 	ol	
Hardware in the Loop (HIL) & Rapid prototyping for		n valves
On Board Diagnosis		
Rule based diagnosis		
Observer based diagnosis with numerical simulation	ns on Matlab/Simulink	
Grading		
Written exam, Oral exam		
Learning hours		
LecturesTutorialsLab sessionsFree la23h4510h0016h150h00		
In person teaching: 50h00		
Taught in English:խխխ SD/SR: 🕐 👁	Innovation:	ØØ

Automotive Engineering and Sustainable Mobility (AESM)	2AE06	Semester 2
Control and on-board diagnosis	s applied to	o vehicle
dynamics		
Supervisor: Guillaume COLIN		ECTS: 5
Skills		
At the end of this course, engineering students will be able to:		
• Find the good set of parameters for a PID controller of	on simple systems	
Tune a vehicle dynamics control		
Control some simple actuators		
Define, parameterize and implement a simple observ	ver-based diagnosis to	ool
Syllabus		
State of the art		
Hardware (sensors, actuators) Software		
Automatic control		
• Linear Models (1st order, 2nd order)		
Conventional Linear Control (PID)		
Applications to vehicle dynamics: labs		
Tuning a vehicle dynamics controller		
Hardware in the Loop (HIL) & Rapid prototyping for C	Control: Application o	n valves
On Board Diagnosis		
Rule based diagnosis		
Observer based diagnosis with numerical simulations	s on Matlab/Simulink	:
Grading		
Written exam, Oral exam		
Learning hours		
Lectures Tutorials Lab sessions Free lab		
31h15 8h45 10h00 0h00 In person teaching: 50h00	0h00	
Taught in English:净净净 SD/SR: ③④	Innovation:	PP

Polytech Orléans robotics challenge

Call for participants

Organizer

Polytech Orleans, the engineering school of the University of Orleans – one of the 17 members of the Polytech Group in France

Language of communication English

Eligibility Students from partner institutions

Purpose

June 3 June 13

Challenge yourself ! Come and live the French student experience.

Discover the French way of life and the hospitality of a host family.

Stay in a host family in Orleans, a city in the Région Centre Val de Loire (UNESCO World Heritage) **only an hour far from Paris by direct train !**

Join a team with French and international students! Together, **imagine and design the best robot** for the dutch shuffleboard !

Number of participants to the robotics challenge : **around 140.**

Participation to the summer camp is free of charge.

A bus and tram pass to move around the city of Orleans is provided free of charge.

Each participant is responsible for the following expenses :

- Transportation from their country to and from Orléans
- Accommodation in a host family (14€/ night, breakfast included)
- Meals (7€/meal with the host family)
- Insurance : travel, health, civil liability & rapatriation

How to apply !

Your home international relations office must send your nomination by April 1st, 2025 to **international.polytech@univ-orleans.fr**

Required documents : copy of passport, CV and cover letter.

3RD EDITION

LOCATION

Polytech Orléans 8, rue Leonard de Vinci 45100 Orléans, France

Digital tools for built neritage Online (4h) and

Online (4h) and face to face (30h)

16-20 June 2025

Blended Intensive Programme

TOPICS

3D survey, photogrammetry, laser scanning, cultural heritage diagnosis, image analysis, artifical intelligence, on site experiments and visit (Chambord)

deadline : April 1st 2025

CONVENORS Sylvie Treuillet Prisme/University of Orléans - FR

Xavier Brunetaud LaMé/University of Orléans - FR

Program 2. FACE TO FACE

1. Online (4h) May 2025 Preparation

2. Face to face (30h) 16-20 June 2025 Orléans, France

3. Independant group work (20h) July and August 2025 **Online evaluation** end of August

Monday, June 16th	Торіс
9:00 - 9:30	Welcome
9:30 - 10:00	Summer school introduction
10:00 - 12:00	Photogrammetry
12:00 - 14:00	Lunch break
14:00 - 17:00	Scanning acquisition with labs (laser, structured light)
Tuesday, June 17th	Торіс
9:00 - 10:00	Heritage diagnosis overview
10:00 - 11:00	Mechanical computation based on 3D point clouds
11:00 - 12:00	Virtual Reality
12:00 - 14:00	Lunch break
14:00 - 17:00	Heritage diagnosis - labs
Wednesday, June 18th	Торіс
9:00 - 12:00	Creating maps for GIS – labs
12:00 - 14:00	Lunch break
14:00 - 17:00	GIS applications – labs
Thursday, 19th	Торіс
9:00 - 10:00	Transport to Chambord
1 <mark>0</mark> :00 – 12:30	Field trip
12:30 – 14:30	Lunch break at Chambord
14:30 - 16:30	Touristic visit of the castle
16:30 – 17:30	Transport back to university
Friday, June 20th	Торіс
9:00 – 12:00	Artificial intelligence for image analysis : basic concepts and practical tools
12:00 - 14:00	Lunch break
14:00 – 16:00	Artificial intelligence for image analysis : basic concepts and practical tools
16:00 – 17:00	Debriefing & closing

3. INDEPENDANT GROUP WORK

OBJECTIVES AND DESCRIPTION

The growing use of 3D digitization is opening up new strategies for the analysis of complex objects. Built heritage structures are undoubtedly complex objects due to their physical singularities (architecture, size, materials, ageing over a long period...), to which is added the transdisciplinary scientific approach required to provide relevant analysis. Digital tools represent a new opportunity to meet the challenge of diagnosing built heritage. This blended intensive program will provide students with the essential skills to be able to carry out and analyze the results of a 3D acquisition campaign, including the use of artificial intelligence to automate part of the procedures.

Beyond its application to built heritage, which is of interest to a wide range of scientific communities, this course is aimed at anyone wishing to develop their skills in digital tools, regardless of their application. Number of ECTS issued 5 ECTS

Language of instruction English

Outcomes

Participants will be able to :

- design and perform a 3D survey campaign
- process the data collected to obtain a 3D representation of the studied object
- extract maps to support further analysis
- analyze maps using a geographic information system (GIS)
- use AI to automate part of the analysis procedure

Chaumont-sur-Loire

METHODS

The blended program will take place in three phases, the first online, followed by a face-toface session in Orleans, France. The online phase, in May, will involve defining the ambitions and modalities of the training course, disseminating the information needed to prepare the face-to-face part, and gathering the specific expectations of participants to adapt the content and level of face-to-face courses. The face-toface part will consist of 5 days of classes at the University of Orleans, France. The courses will be made up of 30% lectures and 70% practical computer work. A field trip dedicated to the discovery of the Château de Chambord, in relation with the BIP themes, is scheduled on the 4th day. The final part is a period of independent group work, to apply the lessons learned to a case study selected by the participants. Each group's work will be assessed in an online presentation at the end of August.

TARGET AUDIENCE / PARTICIPANTS PROFILE

Level : students from Bachelor to PhD

111

Profile : anyone willing to develop their skill on digital tools, such as Mechanical & Civil Engineering ; Material Science ; Electrical & Computer Engineering ; Geology, Geophysics ; Multimedia and Graphics Representations ; History;Conservation Sciences; Architecture ; Tourism...

POLYTECH ORLÉANS

Ecole d'ingénieur de l'université d'Orléans 8 rue Léonard de Vinci 45072 Orléans cedex 2 | FRANCE

www.polytech-orleans.fr