

Avis de Soutenance

Monsieur Nathan BERNARD

Sciences de l'Univers

Soutiendra publiquement ses travaux de thèse intitulés

Dynamique du piégeage par capillarité pour le stockage géologique du CO2 : microfluifdique expérimentale et numérique

dirigés par Madame Sophie ROMAN et Monsieur Cyprien SOULAINE Ecole doctorale : Energie, Matériaux, Sciences de la Terre et de l'Univers - EMSTU Unité de recherche : ISTO - Institut des Sciences de la Terre d'Orléans

> Soutenance prévue le *vendredi 07 novembre 2025* à 10h00 Lieu : 1A rue de la Ferollerie, ISTO, 45071 Orléans, France Salle : Amphithéâtre

Composition du jury proposé

Mme SOPHIE ROMAN	Université d'Orléans	Directrice de thèse
M. Cyprien SOULAINE	CNRS	Co-directeur de thèse
Mme Suzie PROTIèRE	Institut Jean le Rond d'Alembert	Examinatrice
M. Henry BERTIN	Institut de mécanique et d'ingénierie	Examinateur
M. Jean-Louis ROUET	Université d'Orléans	Examinateur
M. Pietro DE ANNA	Université de Lausanne	Rapporteur
M. Michael BERHANU	Laboratoires Matières et Systèmes Complexes	Rapporteur

Mots-clés: microfluidique, capillarité, numérique, expérimental,

Résumé:

La capture et le stockage du carbone (CSC) ont été proposés comme l'une des solutions à la crise écologique actuelle. Cette technologie repose sur l'injection de CO2 dans des réservoirs géologiques souterrains, tels que les aquifères salins ou les gisements d'hydrocarbures épuisés, afin de limiter l'effet de serre. Cependant, le piégeage résiduel, l'un des mécanismes responsables de la rétention du CO2 en profondeur, reste encore mal compris. Cette incertitude limite notre capacité à évaluer avec précision la quantité de carbone qui peut être stockée dans ces formations géologiques. Ce travail a pour objectif d'étudier le piégeage résiduel afin de mieux prédire son impact sur le stockage du CO2 et d'optimiser son efficacité. Pour cela, nous avons combiné des approches expérimentales et numériques pour analyser les écoulements diphasiques dans les milieux poreux. Nous avons introduit la microfluidique ainsi que le modèle du doublet de pores, ou pore doublet, afin de simplifier la description du milieu poreux. À l'aide de ce modèle, nous avons montré que les films de Bretherton, qui apparaissent lors des écoulements diphasiques, peuvent influencer la stabilité de l'invasion dans un pore doublet. Nous avons également mis en évidence que l'inertie, souvent négligée dans l'étude des milieux poreux, a le potentiel de modifier le déplacement du front d'invasion lors du drainage. Enfin, nous avons proposé un protocole expérimental pour étudier comment la mouillabilité de la matrice poreuse est modifiée lors de la présence simultanée de saumure et de CO2 dans les formations géologiques. Nous pensons que ce travail contribue à améliorer la compréhension des écoulements diphasiques en milieu géologique.