

M. ANDRE LANGLET

Avis de Soutenance

Monsieur Aravind AYAGARA

Génie Mécanique et Productique

Soutiendra publiquement ses travaux de thèse intitulés

Caractérization de la fracturation dynamique des os de la cage thoracic: expérimentation et simulation numérique en dynamique rapide

dirigés par Monsieur ANDRE LANGLET et Monsieur RIDHA HAMBLI

Soutenance prévue le jeudi 14 novembre 2019 à 10h00

Lieu: 63 Av de Lattre de Tassigny, IUT de Bourges, 18020 Bourges Cedex

Salle: Sigot

Composition du jury proposé

Directeur de thèse

Université d'Orléans

M. Patrick CHABRAND	Université d'Aix-Marseille	Rapporteur
M. Sébastien LAPORTE	Arts et Métiers Campus de Paris	Rapporteur
M. Jean-François GANGHOFFER	Université de Lorraine	Examinateur
M. Ridha HAMBLI	Université d'Orléans	Co-directeur de thèse
M. Salah NAILI	Université Paris-Est Crétéil Val de Marne	Examinateur
M. Nicolas PRAT	Service de Santé des Armées	Examinateur
M. Julien PAVIER	Nexter Munitions	Invité

Mots-clés: Impact, Réponse dynamique, Côtes, SHPB, LS-Dyna,

Résumé:

L'objectif de cette thèse est de caractériser le comportement mécanique des côtes isolées sous impact en dynamique rapide par l'expérimentation et les calculs EF. Dans le cadre de cette étude, les côtes de porc ont été choisies comme substituts de la côte humaine. Les essais de flexion trois points en dynamique rapide ont été réalisés avec les barres de Hopkinson. Les résultats de campagne expérimentale ont mis en évidence l'influence de la vitesse de déformation sur le temps de fracture, le faciès de rupture et également, sur l'amplitude des forces d'impact. Un modèle numérique 3D d'une côte de porc a été développé, grâce aux images obtenues par micro-CT en Haute Résolution (HR-pQCT). Ensuite, les propriétés élastiques des constituants ont été attribuées à partir des niveaux de gris des images de HR-pQCT. Une loi de comportement élastique-viscoplastique, modifiée pour prendre en compte les effets de la vitesse de déformation couplée avec une loi d'endommagement a été élaborée. La loi d'endommagement présentée, nous permet de prendre en compte l'endommagement non-linaire, la réduction de la rigidité de la structure et les effets de la vitesse de déformation. Le modèle EF présenté dans cette thèse est capable de prédire la fracture des côtes sous impact en dynamique rapide.