

Avis de Soutenance

Madame ALIMA NZIE

Science des Matériaux

Soutiendra publiquement ses travaux de thèse intitulés

Comportement infrarouge de milieux hétérogènes : Mesure et restitution par différentes techniques d'homogénéisation

dirigés par Monsieur DOMINGOS DE SOUSA MENESES

Ecole doctorale : Energie, Matériaux, Sciences de la Terre et de l'Univers - EMSTU Unité de recherche : CEMHTI - Conditions Extrêmes et Matériaux : Haute Température et Irradiation

Soutenance prévue le *vendredi 23 avril 2021* à 9h00

Lieu: 3E avenue de la Recherche Scientifique 45071 Orléans CEDEX 2 France

Salle: Amphithéâtre Charles Sadron

Composition du jury proposé

M. DOMINGOS DE SOUSA MENESES	Université d'Orléans	Directeur de thèse
Mme Émilie SAKAT	Center for Nanoscience and Nanotechnology	Examinatrice
M. Christophe SAUVAN	Institut d'Optique Graduate School	Rapporteur
M. Cédric BLANCHARD	Université d'Orléans	Co-encadrant de thèse
M. Benoit ROUSSEAU	Polytech Nantes-Laboratoire de Thermique et Energie de Nantes	Examinateur
M. Franck ENGUEHARD	Université de Poitiers	Examinateur
M. Christophe SINTUREL	Université d'Orléans	Examinateur
Mme Genevieve FORAY	INSA Lyon	Rapporteure

Mots-clés: Nanocomposites, Représentation de Bergman, Propriétés optiques, Fonction de densité spectrale,

Résumé:

Du fait des propriétés originales liées à leur structuration spatiale, les nanocomposites suscitent un grand intérêt en sciences des matériaux. Leurs propriétés optiques peuvent être adaptées en ajustant les concentrations, les tailles, les formes, ainsi que les matériaux constitutifs. Malgré ce potentiel, leur étude s'avère relativement complexe; l'impact de l'aspect et de la distribution spatiale des hétérogénéités sur leur réponse est aujourd'hui encore mal compris. La représentation de Bergman permet de répondre à de nombreuses questions. Or, cette théorie est applicable uniquement pour des systèmes homogénéisables, typiquement pour des petites particules, et nous montrons ici que des effets collectifs sont susceptibles de rendre cette condition insuffisante. L'objectif de cette thèse est de développer une méthodologie basée sur la théorie de Bergman, combinant des outils numériques et des outils expérimentaux permettant de caractériser finement les propriétés optiques et structurales des milieux hétérogènes. Des nanocomposites synthétiques ont permis de valider la méthodologie. Il en ressort que la forme de la densité spectrale est moins sensible pour les milieux vitreux que pour les matériaux cristallins en raison de leurs larges bandes d'absorption. La généralisation de la méthodologie sur des matériaux plus complexes a permis, d'une part, de récupérer la fonction diélectrique et la fonction de densité spectrale de poudres compactées de nanoparticules de silice. Et, d'autre part, d'identifier la composition chimique des nanophases présentes dans les verres de gallogermanate de zinc démixés.