Fils d'Ariane

University : Main content

Titre de page

University Extension

Share on |

Contenu de la page principale

What is University Extension?

Among the missions attributed to the modern University (initial and lifelong education, professional integration and social promotion, research, dissemination of its results and of humanist culture, international cooperation and exchanges, more recently a contribution to the "knowledge economy" or to the "city of knowledge"; Veltz 2007, Railean et al. 2012, Endrizzi 2017, CPU 2019), University Extension (also called community service, or service to communities in Quebec for example; Thill & Warrant 1998, Pena-Vega & Morin 2003, Tremblay & Freire Vieira 2012, Bussières et al. 2018, UQAM 2019) is the one that is least often, or not at all promoted as such in France. Yet different types of "participatory" research (Houllier & Merilhou-Goudard 2016, Chlous et al. 2017) or popular universities (Richez 2018), for example, are forms of University Extension that are well developed in this country. Moreover, University Extension in the field of natural and environmental sciences and geoenvironmental engineering will become more and more necessary to cope with global planetary and social changes already underway and especially to come (Bihouix 2014 , Servigne & Stevens 2015, Steffen et al. 2015a, b), particularly in terms of sustainable management of water resources (de Lacaze 2013, Falkenmark et al. 2019, WEF 2019), with the need to relocate human skills and activities, to better anchor them in the territories, to answer to the needs of the latter while favoring solutions that are respectful of nature, based on it, and socially acceptable (Harding 2001, Matteucci et al. 2012, Tremblay & Freire Vieira 2012, Dankel et al 2017, Servigne et al 2018, Bihouix 2019)

University Extension has been the subject of debates, colloquiums and concrete achievements since the end of the 19th century in other European countries such as England or Belgium, as well as in the Americas, particularly in Brazil and in Canada (Pellisson 1911, Pena-Vega & Morin 2003, Tremblay & Freire Vieira 2012, Rubião 2013). It is an extended conception of the social and environmental responsibility of the University, born of the realization that the activities of research, and teaching of their methods and their results, are carried out in societies and natural environments that encompass them, induce them, allow them and direct them, and are impacted by them in return (Rubião 2013, Bussières et al. 2018), which the environmental and social consequences of global changes already obvious at the beginning of the 21st century now make clear (Latour 2015). University Extension is part of a conception of the University (Thill & Warrant 1998, Pena-Vega & Morin 2003, Tremblay & Freire Vieira 2012, Rubião 2013, Bussières et al. 2018) that is alternative to both the traditional view of academia as an ivory tower devoted to pure knowledge (Leys 2006), and to more recent trends to limit it to being a higher vocational training school leaving research and expertise to external organizations (Tortonese 2007) or to transform it into a mere service to economic expansion and companies (Testard 2007, Veltz 2007), but which can be used to encompass them in a holistic, environmental, territorial and social perspective (Thill & Warrant 1998, Pena-Vega & Morin 2003, Tremblay & Freire Vieira 2012, Wack et al. 2019).


CETRAHE and University Extension

Ever since its creation CETRAHE has fitted perfectly with these new missions of extension that the University will have to take on more and more in the coming years and century, by fulfilling missions of service to the community and the communities (local, natural parks and reserves, companies with a strong territorial footprint such as quarrying and chemical industries, associations and communities of local residents, consumers or citizens...) through its contributions to a better knowledge of access to and quality of drinking water, sustainable management of water resources and wetlands, and of the global environment, and of wide dissemination of this knowledge, across all its missions and activities:

  • R&D either in its own facilities or in partnership with companies or EPIC (Industrial and Commercial Public Establishments) such as the BRGM (French Geological Survey),
  • collaboration in academic research and communication (articles in peer-reviewed journals, oral communications, posters, public reports...) and with the Services Nationaux d’Observation (SNO: Peat Observatory; Karst Observatory) of the Institut National des Sciences de l'Univers du CNRS (National Institute of Earth Sciences of the French National Scientific Research Organisation) locally coordinated by OSUC (Universe Science Observatory in the Center region),
  • continuing education (unique in this field in French-speaking Europe) in collaboration with a Belgian partner (European Water Tracing Services, Aquapole of the University of Liège), BRGM and Calligée design office,
  • support for initial training (courses, practical work, project management, internships...) of engineering students in the specialty Génie civil et Géo-Environnement (civil and geoenvironmental engineering) of Polytech'Orléans, who are destined for public works and geoenvironmental engineering of sustainable cities and territories, and students following the Geomatics-Limnology-Environment-Territories course of the Master of Geography, Planning, Environment and Development of the University of Orléans,
  • expertise and transfer to the technical services of local authorities, intercommunal syndicates, and companies, especially engineering and design offices responding to public calls for tender in water and environmental management,
  • dissemination, sharing and exchange of scientific knowledge with amateurs, naturalist and riparian associations, consumers, the general public, public managers and elected politicians,
  • creation and regular updating of this website, where all these publics (professionals, researchers, teachers at all levels, students and scholars, public managers, elected officials, environmentalists, naturalists, local residents, consumers...) can find publications of all types, posters, videos, references and links on all issues related to hydrogeological tracing and quality of water and socio-hydrosystems studied by the CETRAHE.

While CETRAHE carries out a large part of its activities in the territory of Orléans Métropole, Val d'Orléans and the Center-Val de Loire area (Petite Beauce, Vendôme Perche, Brenne, Sologne...), it also contributes to the knowledge and management of water and the environment in other French territories, such as the Grands Causses natural regional park (Jozja 2014), or Le Havre Seine Métropole and the Syndicat Mixte des Bassins Versants Caux Seine through collaborations with the design office IDDEA and the University of Normandy in Rouen (Hauchard et al. 2019). It also transfers this know-how internationally for the benefit of its development in other countries, through its continuing education course unique in French-speaking Europe (Défarge et al. 2016), or its collaboration, under the auspices of the Food and Agriculture Organization of the United Nations, with the National Office of Electricity and Water of Morocco (ONEE), for the local acquisition of skills in tracing, their application to the delimitation of water catchment protection areas in the Sahel region of Safi, and the creation of a local expertise laboratory for French-speaking Africa.


University Extension in hydrogeological tracing and water quality analysis

One of the peculiarities of the tracing method is that it has a relatively old origin (the first truly scientific tests were carried out in Switzerland and Germany in the 1870s, and one of the first operations in France was carried out by Marboutin in 1901, in the Val d'Orléans, to prove the contribution of water losses from the Loire to the sources of the Loiret river; Käss 1998, Jozja et al. 2010) but remains fully relevant today with even a strong potential of development, improvement of its performances and broadening of its applications, both in its original hydrogeological domain, where it is still insufficiently carried out, and in other scientific and technical fields such as soil remediation, the assessment of the environmental impacts of facilities and industries, the management of natural hazards (such as sinkholes: Perrin et al. 2016), or the monitoring of water pipes, buildings and other civil engineering works. It is an example of a "low tech" technique (Bihouix 2014), remaining the only one able to prove with certainty hydraulic connections, and partly qualitative because based on visualization, not only on the field or on site (often compared, for geology, to X-rays in medicine; Käss 1998), but also in the laboratory through its spectroscopic identification and quantification methods. This does not preclude its numerical evolution in terms of software development for dimensioning and data interpretation of tracing operations such as TRAC (Gutierrez et al. 2013), or the banking of these data to make them available to the public, elected officials, managers, practitioners and researchers through the BD Traçages (hydrogeological tracking database) of BRGM’s SIGES (groundwater management information systems; Salquèbre et al. 2016), two projects locally expedited thanks to the creation and existence of CETRAHE, and to which the cell has collaborated and continues to collaborate with BRGM.

In terms of environmental issues, especially water resources because of their strong public health impact, alongside theoretical reflection, big data processing and the need for predictive modeling, the University must also pay attention to the problems and to the search for immediate and short-term solutions, and will increasingly have to face the rise in these problems and the urgency of having to deal with them. To overturn Aldo Leopold's warning in 1949, we must now be concerned not only with the health of the Earth, but also practice the art of Earth medicine, which also requires introducing an ethics (Matteucci et al. 2012). In these crucial and sensitive areas, diagnoses and applied research require the contribution of independent academic expertise, as design or control offices and commercial companies in general cannot be left to face these challenges alone: whatever their professionalism, they are logically subject to increasingly rapid constraints of speed and profit. It is through this type of expertise that the University should even exceed its traditional approaches and open up to confrontation and links with other knowledge systems – professional, administrative, political, cooperative, associative, amateur, local, qualitative, intuitive – to tackle the urgent problems of socio-hydro-ecosystems that are complex by nature, whose evolution is uncertain, irreducible to quantification alone, and with strong health and social implications (Funtowicz & Ravetz 1994, Goodwin 1999, Harding 2001, Frodeman 2013, Dankel et al. 2017, Egan 2017, Larousserie 2017, Servigne et al. 2018).

A unique reference structure in France in the field of artificial tracing, CETRAHE allows the existence of such an independent, open, cooperative, pragmatic expertise, focused on the quality of scientific results and educational messages, and their environmental and societal impact, and not subject to obligations to achieve financial profit, economic or intellectual competition, or academic "performance", and which contributes on its scale to inform public decision, to respect the environment and human health, to the positive evolution of territories and in particular the one in which it is established, to economic activity, to social well-being and to the progress of science and culture.

 

Références and links

Bihouix P. 2014. L’Âge des low tech. Vers une civilisation techniquement soutenable. Seuil, Collection Anthropocène, 330 p.

Bihouix P. 2019. Le Bonheur était pour demain. Les rêveries d’un ingénieur solitaire. Seuil, Collection Anthropocène, 367 p.

Bussières D. Chicoine G. Fontan J.M. Kurtzman L. de Grosbois S. Létourneau-Guillon G. Lizée M. Pelletier M. Riverin J.A. van Schendel G. Vanier C. 2018. La Coconstruction des connaissances : l’expérience du Service aux collectivités de l’UQAM. Une inspiration majeure pour le TIESS. Université du Québec À Montréal & Territoires Innovants en Economie Sociale et Solidaire, 106 p.    

Chlous F. Dozières A. Guillaud D. Legrand M. (coord.) 2017. Des recherches participatives dans la production des savoirs liés à l’environnement. Natures Sciences Sociétés 25, p. 327-453.      

Conférence des Présidents d’Université 2019. Qu’est-ce que l’Université française ? http://www.cpu.fr/information/quest-ce-que-luniversite-francaise/, consulted on February 10, 2019. 

Dankel D.J. Vaage N.S. van der Sluijs J.P. 2017. Post-Normal science in practice. Futures 91, p. 1-90.

Défarge C. Jozja N. Klinka T. Meus P. Mondain P.H. Muet P. 2016. Bilan de 6 années de formation continue en traçage hydrogéologique à l'université d'Orléans). Géologues 190, "Les formations sont-elles adaptées aux emplois ?", p. 106-110.

de Lacaze X. 2013. Bilan du projet Explore 2070. Les stratégies d’adaptation évaluées par le MEDDE. Résultats et premiers enseignements. Journée de restitution, 24 mai 2013, Paris, 49 p. 

Egan M. 2017. Survival science: crisis disciplines and the shock of the environment in the 1970s. Centaurus 59, p. 26-39.

Endrizzi L. 2017. Recherche ou enseignement : faut-il choisir ? Dossier de veille de l'IFÉ 116, ENS de Lyon, 48 p.   

Falkenmark M. Wang-Erlandsson L. Rockström J. 2019. Understanding of water resilience in the Anthropocene. Journal of Hydrology X 2, 100009, 13 p.

Frodeman R. 2013. Sustainable Knowledge. A Theory of Interdisciplinarity. Palgrave Pivot, 127 p.

Funtowicz S.O Ravetz J.R. 1994. Uncertainty, complexity and post-normal science. Environmental Toxicology and Chemistry 13, p. 1881-1885.

Goodwin B. 1999. From control to participation via a science of qualities. ReVision 21, p. 26–35.

Gutierrez A. Klinka T. Thiéry D. Buscarlet E. Binet S. Jozja N. Défarge C. Leclerc B. Fécamp C. Ahumada Y. Elsass J. 2013. TRAC, a collaborative computer tool for tracer-test interpretation. Proceedings "TRACER 6", Sixth International Conference on Tracers and Tracing Methods, Oslo, 6-8 juin 2011. European Physical Journal Web of Conferences 50, 03002, 8 p.

Harding S. 2001. Earth System Science and Gaian Science. In Guerzoni S. Harding S. Lenton T. Ricci Lucci F. (eds.), Earth System Science, a New Subject for Study (Geophysiology) or a New Philosophy?, Proceedings of the International School on Earth and Planetary Sciences, University of Siena, p. 227-233.

Hauchard E. Turban L. Sabatier S. Jozja N. 2018. Influence de la structure géologique sur le fonctionnement du karst de la Craie. Exemple des bassins de la Rançon et de la Sainte Gertrude, affluents de la Seine Normande. Géologues 199 "L'hydrogéologie de la craie", p. 11-19.

Houllier F. Merilhou-Goudard J.B. 2016. Les Sciences participatives en France. Ministère de l’Éducation nationale, de l’Enseignement supérieur et de la Recherche, 122 p.

Jozja N. 2014. Etude hydrogéologique du Causse du Guilhaumard et des Avants-Causses Saint-Affricains. Lot 5 : Informations apportées par les traçages. Université d'Orléans & Parc Naturel Régional des Grands Causses, décembre 2014, 218 p.

Jozja N. Maget P. Défarge C. Mauget C. Pidon A. Prod'homme S. Rousseil K. Munerot J. Thauvin S. Dufour A. 2010. Apport des traçages à la connaissance du système karstique du Val d'Orléans. Historique et nouvelles avancées. Géologues 167 "Hydrogéologie urbaine", p. 70-74.

Käss W. 1998. Tracing Technique in Geohydrology. A. A. Balkema, 581 p.

Larousserie D. 2017. Des scientifiques s’essaient au modèle coopératif. Le Monde Science & Médecine, 25 janvier, p. 2.

Latour B. 2015. Face à Gaïa. Editions La Découverte, 399 p.

Leopold A. 1949. A Sand County Almanac and Sketches Here and There. Oxford University Press, USA, 1968, 286 p.

Leys S. 2006. Une idée de l’Université. L’Atelier du roman 47, p. 13-16.

Matteucci R. Gosso G. Peppoloni S. Piacente S. Wasowski J. 2012. A Hippocratic Oath for geologists? Annals of Geophysics 55, p. 365-369.

Pellisson M. 1911. Extension universitaire. In Buisson F. (dir.), Nouveau Dictionnaire de Pédagogie et d’Instruction primaire. Edition électronique, ENS Editions, 2007.

Pena-Vega A. Morin E. (coord.) 2003. Université, quel avenir ? Propositions pour penser une réforme. Editions Charles Léopold Mayer, 115 p.

Perrin J. Gutierrez A. Vanoudheusden E. Salquèbre D. Joigneaux E. Château C. Jozja J. Défarge C. Binet S. 2016. Projet i-Fontis : vers une méthodologie de surveillance de l'apparition de fontis dans le Val d'Orléans. Rapport final. BRGM/RP-65474-FR, mars 2016, 122 p.

Railean V. Curbatov O. Gay M. (coord.) 2012. Le rôle des universités et des universitaires dans l’économie de la connaissance. Institutul International de Management (IMI-NOVA) et Association Internationale des Professeurs et Maîtres de conférences des Universités (IAUPL), Impressum, 152 p.  

Richez J.C.  2018, Les Universités populaires en France. Un état des lieux à la lumière de trois expériences européennes : Allemagne, Italie et Suède. Institut National de la Jeunesse et de l’Education Populaire (INJEP), Notes & rapports / Rapport d’étude, 75 p.  

Rubião A. 2013. L’"extension universitaire" : une conception latino-américaine de la démocratisation de la connaissance. Le sujet dans la Cité 4, p. 81-95.

Salquèbre D. Husson F. Jozja N. Morel O. Ros C. Défarge C. 2016. Inventaire et diffusion des données de traçages hydrogéologiques en région Centre-Val de Loire. Rapport final. BRGM/RP-65895-FR, juin 2016, 33 p.

Servigne P. Stevens R. 2015. Comment tout peut s’effondrer. Petit manuel de collapsologie à l’usage des générations présentes. Seuil, Collection Anthropocène, 301 p.

Servigne P. Stevens R. Chapelle G. 2018. Une autre fin du monde est possible. Seuil, Collection Anthropocène, 323 p.

Steffen W. Broadgate W. Deutsch L. Gaffney O. Ludwig C. 2015a. The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review 2, p. 81–98.

Steffen W. Richardson K. Rockström J. Cornell S.E.  Fetzer I. Bennett E.M. Biggs R. Carpenter S.R. de Vries W. de Wit C.A. Folke C. Gerten D. Heinke J. Mace G.M. Persson L.M. Ramanathan V. Reyers B. Sörlin S. 2015b. Planetary boundaries: Guiding human development on a changing planet. Science 347, full version on line, 12 p.

Testard J. 2007. La recherche confisquée par l'innovation marchande. Alliage 61, "Où va la science ?", p. 24-30.

Thill G. Warrant F. 1998. Plaidoyer pour des universités citoyennes et responsables. Presses universitaires de Namur, 238 p.

Tortonese P. 2007. Contre la professionnalisation de l’Université. In Jourde P. (dir.), Université : la grande illusion. L’Esprit des péninsules, p. 185-195.

Tremblay G. Freire Vieira P. (dir.) 2012. Le Rôle de l’Université dans le développement local. Expériences brésiliennes et québécoises. Presses de l’Université du Québec, 272 p. 

UQÀM (Université du Québec à Montréal) 2019. Le service aux collectivités. https://sac.uqam.ca/, consulted on February 10, 2019.

Veltz P. 2007. L’université au cœur de l’économie de la connaissance. Esprit, December, p. 146-159.

Wack A.L. Roussel G. Fayolle J. 2019. Urgence climatique : universités et grandes écoles mobilisées aux côtés des étudiants pour la réalisation des 17 Objectifs de Développement Durable. Conférence des Grandes Ecoles (CGE), Conférence des Présidents d'Université (CPU) & Conférence des Directeurs des Ecoles Françaises d'Ingénieurs (CDEFI), 8 juillet, 2 p.

World Economic Forum 2019.  The Global Risks Report 2019, 14th Edition, 107 p.