Publications
Conférences internationales
- J.Chouquet et C.Tasson (CSL 2020) :
Taylor
expansion for Call-By-Push-Value
Abstract
Nous proposons un calcul à ressources adapté à Call-By-Push-Value, à l’aide duquel nous définissons un développement de Taylor. On établit que ce développement est cohérent avec les sémantiques opérationelles et dénotationelles de Call-By-Push-Value en nous inspirant d’outils de la Logique Linéaire. L’essentiel de ce travail consiste à donner une contrepartie syntaxique aux morphismes de coalgèbre de la sémantique.
- J. Chouquet (MFPS 2019) :
Taylor expansion, finiteness and strategies
AbstractOn examine des méthodes récentes visant à étendre les résultats de Ehrhard et Regnier sur le développement de Taylor : les combinaisons linéaires d’approximants d’un λ-terme peuvent être normalisées sans faire apparaître de coefficients infinis. Les méthodes considérées permettent d’étendre ce résultat à des calculs non uniformes; on montre qu’en se concentrant sur des stratégies d’évaluation précises, comme l’Appel-Par-Valeur, l’Appel-Par-Nécessité, PCF, ou des variantes de l’Appel-Par-Pousse-Valeur (le Bang-Calcul en particulier), l’extension des résultats de finitude de Ehrhard et Regnier peuvent s’appliquer ou non, selon la structure du calcul original. En particulier, on introduit un calcul à ressources pour l’Appel-Par-Nécessité, et montrons que le résultat de finitude de son développement de Taylor peut être dérivé de nos considérations sur l’Appel-Par-Valeur. Nous introduisons aussi un calcul à ressources pour une présentation de PCF avec un point fixe explicite, et montrons comment cela interfère avec le résultat de finitude. On examine ensuite le Bang-Calcul de Ehrhard et Guerrieri, qui possède les propriétés de l’Appel-Par-Pousse-Valeur dans une présentation légèrement différente.
- J. Chouquet et L. Vaux-Auclair (CSL 2018) :
An application of parallel cut elimination in unit-free multiplicative linear logic to the Taylor expansion of proof nets
AbstractNous étudions l'élimination des coupures parallèle dans les réseaux de preuve connexes de la logique linéaire multiplicative. Nous donnons une borne à la réduction de la taille et à l'évolution de la longueur des chemins d'interrupteurs sous réduction parallèle, et nous montrons que que ce résultat combinatoire s'applique au développement de Taylor des réseaux de MELL: les coefficients restent finis sous réduction de combinaisons linéaires infinies de réseaux à resource, car ces réseaux se comportent essentiellement comme ceux de MLL.
Articles
- J. Chouquet et L. Vaux-Auclair :
An application of parallel cut elimination in multiplicative linear logic to the Taylor expansion of proof nets
AbstractNous étendons le résultat de notre article CSL, le généralisant à un fragment plus large de la logique linéaire, incluant les affaiblissements et les unités multiplicatives. Cela exige des méthodes spécifiques pour travailler avec les structures non connexes, en particulier à cause de coupures qui peuvent se réduire dans des sous-structures vides.
Thèse
- Une géométrie du calcul (en français). Soutenue le 6 décembre 2019.
- Transparents de la présentation.
Transparents d'exposés
- Sémantiques dénotationelles des programmes réactifs Présentation aux journées d'équipe LMV d’approches dénotationnelles de la programmation réactive, et pistes pour le projet de recherche associé.
- Topological insights on probabilistic agreement Presentation de resultats sur la topologie combinatoire appliquée aux algorithmes distribués probabilistes. Invitation au séminaire Verimag à Grenoble, février 2020.
- Taylor expansion for Call-By-Push-Value Présentation de l’article publié à CSL 2020, coécrit avec Christine Tasson.
- Ma vie, mon œuvre Presentation à la journée de rentrée de l’UFR d’informatique de l’Université de Paris. Septembre 2019.
- Elimination des coupures dans le développement de Taylor des réseaux. Présentation aux journées PPS de 2018
- Chemins et sauts dans le développement de Taylor des réseaux Présentation à l'atelier "Réseaux" du GDR Logique Linéaire à Villetaneuse, 2018
- Taylor expansion, finiteness and strategies Presentation de mon article à MFPS 2019 , Londres, 7 juin