Fils d'Ariane

University : Main content

Titre de page

Soutenance de thèse de Justine LARGILLIÉRE

Contenu de la page principale

photo ADN

Date -
Heure 14h00 - 17h00
Adresse

Amphithéâtre Charles Sadron - Visioconférence
3E Avenue de la Recherche Scientifique - Campus CNRS
France

Contact
Lien http://www.univ-orleans.fr/fr/univ/recherche/temps-forts/soutenances-de-theses-…

HU est une protéine bactérienne qui est impliquée dans de nombreuses fonctions liées à l'ADN. Elle est présente sous forme de trois dimères chez E. coli (deux homodimères et un hétérodimère). Lorsque les deux homodimères sont mélangés in vitro, ils échangent leurs chaînes pour former l'hétérodimère. Mon travail a consisté à caractériser, structuralement et cinétiquement, ce mécanisme d'échange qui peut être décrit comme une réaction d’ordre 2 se déroulant en 3 étapes : d'une conformation native (N2) de chaque homodimère à une conformation intermédiaire (I2, partiellement dissociée et déstructurée), puis la formation d'un tétramère transitoire (étape limitante) qui se dissocie finalement en deux hétérodimères. Les résidus considérés comme étant les déterminants structuraux permettant la transition entre N2 et I2 ont pu être déterminés. Ces résidus, enfouis dans N2, forment un patch hydrophobe sur la surface de I2. Ce patch peut être impliqué dans la reconnaissance des chaînes de HU et permettrait la formation du tétramère.  MC1 participe à l'organisation du génome de plusieurs archées, à la transcription de l'ADN et à la division cellulaire par des mécanismes inconnus. Nous présentons la structure d'un complexe formé par MC1 avec un ADN de 15 paires de bases. Alors que la protéine a besoin d'adapter sa conformation légèrement, l'ADN subit une courbure dramatique et une torsion impressionnante. Une telle conformation en V du complexe et un modèle structural de MC1 avec un ADN plus long nous ont amené à proposer un nouveau mode de liaison de la protéine en tant qu’« enrouleur ». Des expériences de diffraction RX et de SAXS ont été réalisées sur ce complexe. Malheureusement, la structure n'a pas pu être résolue en raison du manque de données de diffraction et les données SAXS ont invalidé le modèle. Ces résultats confirment que MC1 est une protéine atypique, qui stabilise de multiples conformations en V de l'ADN de manière flexible et dynamique.