Fils d'Ariane

University : Main content

Titre de page

Soutenance de thèse de Valentin GLASZIOU

Partager sur |

Contenu de la page principale

Energie combustion

Date -
Heure 10h00 - 13h00
Adresse

Amphithéâtre Charles Sadron - Laboratoire ICARE
3E Avenue de la Recherche Scientifique - Campus CNRS
France

Contact
Lien https://wwwd8prod.univ-orleans.fr/fr/group/89/content/create/group_node%3Auniv_…

Le domaine de la Défense porte un fort intérêt à l’utilisation de particules d’aluminium dans les explosifs puisqu’elles constituent un vecteur supplémentaire d’énergie. Les particules d’aluminium sont chauffées par l’onde de détonation puis dispersées avec l’expansion des gaz et brûlent dans les produits de détonation et l’air au cours d’une phase appelée postcombustion. Une chaleur supplémentaire est alors produite au sein de la boule de feu, ce qui conduit à augmenter le souffle et rend la boule de feu encore plus lumineuse. La compréhension de la combustion des particules d’aluminium dans ces ambiances particulières intéresse des agences telles que le CEA afin qu’ils puissent appréhender au mieux la modéliser. L’étude fondamentale de la combustion d’une particule d’aluminium a été réalisée sur un lévitateur électrodynamique d’ICARE (CNRS). Des analyseurs optiques permettent de capturer les séquences de combustion et de suivre l’évolution de la réaction en fonction du temps. Des méthodes d’analyse supplémentaires furent développées. Elles portent sur la mesure de la température durant la combustion. Les systèmes mis en place se basent sur la pyrométrie multispectrale et une analyse spectrale des émissions gazeuses de la réaction. Les ambiances étudiées sont principalement composées des espèces retrouvées dans une atmosphère de postcombustion (CO2, H2O et N2) et aussi dans l’air. L’impact de la pression fut étudié dans l’air et le CO2. L’examen des temps de combustion des particules d’aluminium a mené à l’optimisation d’une loi empirique de combustion. Elle permet de déterminer le temps de combustion d’une particule d’aluminium de diamètre connu en fonction des caractéristiques de l’atmosphère qui l’entoure (pression, composition de l’environnement). Ces éléments permettent d’améliorer la description fondamentale du phénomène et d’accroître les capacités de prédiction des codes de simulations.