Fils d'Ariane

University : Main content

Titre de page

Soutenance de thèse de Ouassim FELIACHI

Contenu de la page principale

Tableau Formule_prof

Date -
Heure 14h00 - 17h00
Adresse

Amphithéâtre IRD - Bâtiment IRD
5 rue du Carbone - Campus Université
France

Contact
Lien http://www.univ-orleans.fr/fr/univ/recherche/temps-forts/soutenances-de-theses-…

Comprendre comment décrire un système avec des équations macroscopiques, qui sont généralement détermin- istes, en partant d’une description microscopique, qui peut être stochastique est le problème fondamental de la physique statistique. Souvent, cette tâche implique au moins deux limites : une limite "grand N" et une limite "d’équilibre local". La première permet de décrire un système de N particules par une fonction de distribution dans l’espace des phases, tandis que la seconde reflète la séparation des échelles de temps entre l’approche rapide de l’équilibre local et l’évolution lente des modes hydrodynamiques. En supposant ces deux limites, on obtient une description macroscopique déterministe. Pour des raisons à la fois théoriques et de modélisation (N est grand mais pas infini, la séparation des échelles de temps n’est pas parfaite), il est parfois important de com- prendre les fluctuations autour de cette description macroscopique. L’hydrodynamique fluctuante fournit un cadre pour décrire l’évolution des champs macroscopiques tout en prenant en compte les fluctuations induites par le nombre de particules finies dans la limite hydrodynamique. Cette thèse traite de la dérivation de l’hydrodynamique fluctuante à partir de la description microscopique de la dynamique des particules. La dérivation de l’hydrodynamique fluctuante se fait en deux étapes. Premièrement, la limite "grand N" doit être affinée pour prendre en compte les fluctuations au-delà du comportement moyen du système. Pour ce faire, nous utilisons la théorie des grandes déviations pour établir des principes de grandes déviations qui décrivent la probabilité de tout chemin d’évolution pour le système de particule au-delà du chemin le plus probable décrit par l’équation cinétique. Ensuite, nous dérivons la l’hydrodynamique fluctuante en étudiant la limite hydrodynamique du principe de grande déviation cinétique, ou l’équation cinétique fluctuante associée. Ce manuscrit contient l’explication de ce programme et son application à divers systèmes physiques allant du gaz dilué aux particules actives.